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Abstract 

Recent works on optimal income tax found that for unbounded distributions of 

earnings the optimal tax rate at the top is relatively high (around 60 percent). 

This finding is puzzling in light of the well-known result for bounded distributions 

of a zero optimal tax rate at the top. Our paper shows that the more recent papers 

have used assumptions that favor a high asymptotic tax rate: Pareto instead of 

Log-normal distribution and linear instead of non-linear utility of consumption. 

Using these two assumptions along with a logarithmic utility of leisure leads to an 

optimal rate of 100%, a result that is avoided in recent literature by assuming a 

constant compensated elasticity of labor. We find that even when using a Pareto 

distribution of earnings the optimal asymptotic tax rate is about a half compared 

to recent literature.  

 

Keywords: Optimal Income Tax 

JEL Classifications: H21 
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1. Introduction 
This paper presents an analytical expression for the optimal asymptotic tax rate that 

allows us to explore the conditions under which the optimal tax rate is high or low at 

the top of the earnings distribution. The benchmark model for non-linear taxation 

analysis in Public Economics was introduced by Mirrlees (1971). The main analytical 

result of this model is that optimal tax rates are in the range between zero and one. 

Consequently, in order to get a further insight on optimal tax rates the usual 

convention has been to run simulations. 

 

Until late nineties, most simulations have shown declining tax rates at high income 

levels, with tax rates at the top varying from 15 (Mirrlees, 1971) to 40 (Kanbur and 

Tuomala, 1994). 1 These early simulations were based on a lognormal distribution of 

income and concave utility functions for both leisure and consumption. However, 

using a linear utility of consumption, Diamond (1998) has shown an example where 

optimal tax rates go up at high income levels reaching a high asymptotic rate. 

 

The high asymptotic tax rate is in sharp contrast with the familiar result of a zero tax 

rate at the top of the earnings distribution (Sadka, 1976, Seade, 1977). Following 

Diamond (1998), that have used an unbounded distribution of earnings, the zero tax 

rate result was perceived to be both local and exotic.2 Thus, it seems to be that the 

zero tax result is limited to bounded distribution.  

 

                                                 
1   In addition to Mirrlees simulations, declining optimal tax rates were found by Atkinson (1973), 
Tuomala (1984) and Kanbur and Tuomala (1994). 
2  In fact, this point was previously shown by Tuomala (1984) who emphasized that zero limit of 
marginal tax rate at the upper end of the distribution "is really very local". 
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Dahan and Strawczynski (2000) – henceforth DS - used simulations to show that 

Diamond's increasing pattern is sensitive to the assumption of a linear utility of 

consumption: using a logarithmic utility of leisure, they show that the concavity of the 

utility of consumption makes the difference between increasing (as in Diamond) and 

decreasing (as in Mirrlees) optimal income tax rates. The decreasing optimal tax rates 

at the top of the distribution casts doubts on Diamond's result regarding the relatively 

high asymptotic tax rate.  

 

In a recent contribution, Saez (2001) has extended Diamond's result of increasing 

optimal tax rates at the top and high asymptotic tax rates to a case where the utility of 

consumption is concave. He found that with a constant elasticity of labor and a 

logarithmic utility of consumption the optimal tax rates go up at high income levels, 

and reach an asymptotic tax rate between 50 and 60 percent. This result was obtained 

using a distribution of wages that approximates the empirical distribution of wages in 

the U.S., which, according to the author it resembles fairly well a Pareto distribution. 

Since Saez's model was based on a non-linear utility of consumption, his finding re-

opens the question on whether the result of a high asymptotic tax rate should be 

considered as a benchmark result. 

 

In this paper we explore this question by calculating asymptotic tax rates, i.e., the 

limit of optimal non-linear marginal tax rates when the wage tends to infinity. It is 

interesting to note that Mirrlees (1971) has already analyzed the optimal asymptotic 

income tax rates, although his results have not been emphasized in the literature. In 

this paper we aim at shedding light on the mechanisms that drive these results, and 

analyze cases that were not discussed in the literature in recent years.  
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The paper is organized as follows: in Section 2 we present the model that serves as a 

basis for the analytical expression for calculating optimal asymptotic tax rates. The 

basic propositions, which refer to the different cases analyzed in the literature under 

different assumptions concerning the utility functions of leisure and consumption and 

the income distribution, is presented in Section 3. Section 4 analyzes the optimum 

non-linear shape under a lognormal distribution of earnings, and Section 5 concludes. 

 

2. Non-linear optimal income tax 

2.1 The Model  

Assume the following utility function: 

(1) u U C V L= + −( ) ( )1  

where C is consumption, 1-L is leisure and U and V are respectively the utility of 

consumption and the utility of leisure. The budget constraint at the individual level is: 

 (2) C w wL w T wL w( ) ( ) [ ( )]= −  

where T symbolizes the income tax, which is defined on total income since the wage 

w and the supplied amount of labor L(w) are not observed by the government. The 

first order condition at the individual level is: 

 (3) T`                                  , w)1(
U

V

C

)L1( ≡ττ−=−  

where V(1-L) and UC are the first derivatives of V and U, respectively. Assume also the 

existence of the self-selection constraint, which takes the form that utility must 

increase with w3:  

                                                 
3   This assumption assures agent monotonicity; i.e., before taxes, income and consumption rise with 
skill (see Myles, 1995, p.140, and Stiglitz, 1987). 
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We introduce now the government, which maximizes the social welfare function: 

 (5) SW = G U C w V L w f w dw
w

w

L

H

{ [ ( )] [ ( )]} ( )+ −∫ 1  

where wL and wH are the bottom and top of the positive and continuous distribution of 

skills. The budget constraint of the economy is: 

 (6) C w f w dw wL w f w dw
w

w

w

w

L

H

L

H

( ) ( ) ( ) ( )= ∫∫  

i.e., government intervention is purely redistributive. We are now ready to write the 

hamiltonian (H), which is composed by the social welfare utility function, the budget 

constraint of the economy and the differential equation for the state variable u (given 

by the self-selection constraint): 

  

 (7) 
w
LV)w(

dw
dF)]}w(wL)w(C[)u(G{H Lλ+−γ−=     

 

The control variable of this problem is L. γ is the multiplier of the budget constraint 

and λ is the multiplier of the self-selection constraint. The F.O.C. for a maximum are: 

 

L

LLL

C

L

LLL
uu

L

V
LVwhere

w
Vw

dw
dF

U
Vw

LVV
w
w

dw
dF

dL
dCw

L
u

u
GH

−==+++=

=−+−+
∂
∂

∂
∂

= −−

δδ
λ

γ

λγ

,0)1()()(

0)()()()8(



 6

 

The transversality conditions are: 

 

By integration of both sides of (9), and using the transversality conditions (10) we 

obtain: 

(11) )()()()()( wwwdw
dw

wddw
dw
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dG
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H Hw

w

w

w
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C

λλλλγ
∫ ∫ −=−==−−  

Using this expression and the first order conditions of both government (equation 8) 

and individuals (equation 3), we obtain: 
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Equation 12 is the analytical expression to be used for the calculation of optimal 

asymptotic tax rates. The first term in the RHS is the "efficiency effect". The higher 
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the compensated elasticity of labor the lower the optimal marginal income tax rate. 

The second term is the standard "income effect", which is dependent on the marginal 

utility of consumption. For high income levels, the marginal utility of consumption is 

low, and thus the incentive to work harder as a result of net income reduction 

disappears. The third effect is the "inequality aversion effect", which depends both in 

the concavity of the utility of consumption and the social welfare function. For 

concave functions, this effect increases with income. The last effect is the 

"distribution effect": the higher the proportion of individuals above the wage level 

relative to the proportion of individuals at this level, the less distortionary is the 

marginal tax rate, since for these individuals the marginal tax rate acts like a lump-

sum tax. Thus, a higher ratio of  (1-F) over f implies a higher optimal tax rate. 

 

2.2 The optimal asymptotic labor supply 

In this sub-section we characterize labor supply when w tends to infinity and marginal 

utility of consumption equals µ−c . 

Log Utility of leisure 

F.O.C.: 

(13)   µ−
µ

=
−

1w
L1

L  

Thus, we have three cases: 1) µ<1 (which includes linear utility of consumption): in 

this case labor supply goes to one, and consequently ε goes to infinity. 2) µ=1 (log 

utility of consumption): in this case labor tends to a finite number, i.e., there is an 

internal solution. 3) µ>1 (which includes utility of the type -1/c): in this case labor 

goes to zero, and ε goes to one. 
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Constant elasticity of substitution 

(14)   µ−−+µ = 11b wbL  

Again, there are three cases: 1)  µ<1 (linear utility of consumption): in this case labor 

supply goes to infinity, but ε equals to b.4 2) µ=1 (log utility of consumption): in this 

case labor tends to a finite number, i.e., there is an internal solution. 3) µ>1 (utility of 

the type -1/c): in this case labor supply goes to zero, and ε equals to b. 

 

3. Optimal asymptotic tax rates 

This section explores the optimal asymptotic income tax rate utilizing Equation 12 

and the results on labor supply from the previous section. 

Proposition 1: 

With a logarithmic utility of leisure, the asymptotic tax rate converges to one both for 

a Pareto and Lognormal distribution of earnings, when the utility of consumption is 

linear. 

 

Proof 

In this case, equation 12 can be written as follows: 

(15)   
( ) f

F1lim
)w(F1

ds)s(f)u`(G
U
1

lim*Ulim
1

lim
w

w c

w

2
cw2w

−
−









γ

−

=
τ−
τ

∞→

∞

∞→∞→∞→

∫
 

 

Using L`Hopital`s rule the second term in the right hand side is equal to: 

 

                                                 
4  Henceforth we will allow labor supply to tend to infinity. 



 9

(16)   1)u`(G
U
1

)w(F1

ds)s(f)u`(G
U
1

lim)w(Blim
c

w c

ww
=

γ
−=

−









γ

−
≡

∫
∞

∞→∞→
  

 

where B(w) reflects the inequality aversion effect. The benefit of a dollar revenue 

worth's a dollar for a linear utility of consumption regardless of the wage level. The 

cost of a dollar in term of social welfare is G'(u) and it goes to zero with a standard 

social utility function that has some degree of inequality aversion (or to a finite 

number) as wage goes to infinity. Thus, at the limit of the wage distribution B(w) 

equals 1. 

 

Therefore, the asymptotic tax rate converges to: 

 

(17)   [ ][ ] ∞=



 −

=
τ−
τ

∞→∞→ f
F1lim11

)1(
lim

w2w
 

 

This is true for both Pareto and Lognormal distributions. With a Pareto distribution of 

the form f=αkα/w1+α (where α and k are some constants), the distribution effect goes 

to infinity: 
α

=
− w
f

F1  and as a result τ/(1-τ)2 goes to infinity and the tax rate goes to 

one. 

In the Lognormal case, the tax rate goes to one because s
wlog
w

f
F1

ϖ−
=

−  [where s 

denotes the standard deviation of log(w) and ϖ denotes the average of log(w)] and it 

also goes to infinity as wage goes to infinity. 
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One way to see the intuition behind this unique result is the following. We saw that 

the standard income effect and the inequality aversion effect are both constant and in 

the case of Pareto distribution the distribution effect divided by w is also constant. 

Thus, the only factor that plays a role is ε, which equals 1 over the compensated labor 

supply elasticity plus one. Since in this case the labor supply tends to one, it is easy to 

see that the compensated elasticity tend to zero and the expression of ε goes to infinity 

as the wage goes to infinity. In other words, assuming a linear utility of consumption 

drives individuals to supply labor inelastically and therefore the optimal income tax 

rate should be 100%. 

 

An optimal tax rate of 100% on the most able individual (loosely speaking given that 

we work with an unbounded distribution) is far from trivial at first glace. In particular, 

this result is at the opposite polar of the well known result of Sadka (1976) and Seade 

(1977). Our technique of driving the optimal asymptotic income tax rate helps to 

clarify the forces behind this unique result. Although the result of τ=1 appeared in 

Mirrlees (1971), to the best of our knowledge it was never emphasized explicitly in 

the optimal income tax literature.  

 

However, replacing the logarithmic utility of leisure with a constant compensated 

elasticity of labor supply and using log-normal distribution instead of Pareto 

distribution would yield a result that is consistent with the well known result of a zero 

income tax rate at the top of the distribution.  
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Proposition 2: 

The asymptotic tax rate converges to a finite number for a Pareto distribution of 

earnings and constant (compensated) elasticity of labor, both with linear and non 

linear utility of consumption. 

 

We assume that the utility of leisure is of the form V(L)=1-Lb where b is some 

constant, and 1/(b-1) is the compensated elasticity of labor. The case of a constant 

compensated elasticity was not covered in Mirrlees (1971) due to the assumption that 

labor supply could not exceed one. However, we can use the first order condition once 

we relax this assumption by letting the labor supply to go to infinity as in Diamond 

(1998) and Saez (2001). If an upper bound of 1 was to be enforced exogenously the 

first order condition will not hold as equality and we would not be able to derive the 

optimal tax rate. In addition we assume a Pareto distribution of the form: f=αkα/w1+α 

as before. 

 

Proof 

Plugging these two assumptions into equation 12 we get: 

 

(18)   )w(Blim*Ulim*b
1

lim
wcww ∞→∞→∞→ α

=
τ−

τ  

 

Therefore, the asymptotic tax rate converges to: 

 

(19)   
α

=















γ

−
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=
τ−
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1Ublim

1
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This proof shows the forces behind the optimal income tax. The interaction between 

the standard income effect and inequality aversion effect is of particular type. We can 

see that the standard income effect drives the optimal tax rate to zero. Taxing the very 

rich will not induce them to work more because the income effect at those levels of 

income fades away already. At the same time, the income effect works in the opposite 

direction through the inequality aversion effect. Thus, taxing the income of the very 

rich produces an extremely large additional social welfare.  

 

Zero marginal utility means that taking money away from the very rich does not alter 

their welfare but the government has more resources to improve the welfare of others. 

One can see that the standard income effect is canceled out exactly by the inequality 

aversion factor. Thus, the product of the inequality effect and income effect equals 

one. Hence, the asymptotic tax rate depends on the efficiency effect multiplied by the 

distribution effect which converges to a finite number (b/α) both with linear and non-

linear utility of consumption. Note that in this particular case (i.e., Pareto distribution 

and constant labor elasticity) this result holds for any form of non-linear utility of 

consumption. 

 

The asymptotic income tax rate is the same both for Utilitarian and Rawlsian social 

welfare function. In the case of Utilitarian social welfare the asymptotic rate is the 

same either G`(u) equals to zero or any positive number. However, in the case of 

linear utility of consumption the asymptotic tax rate depends on whether G`(u) goes to 

zero or to some positive number. So, the asymptotic tax rate is lower if G`(u) goes to 
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a positive number. For the values assumed by Saez (a compensated elasticity of 0.25 

and 0.5), the optimal asymptotic tax rate varies from 0.714 to 0.6, respectively.5 

 

Proposition 3: 

For a Pareto distribution of earnings and log utility of leisure, the asymptotic tax rate 

converges to a finite number both in the case of log-utility of consumption and for 

utility of consumption of the type -1/c. 

Proof 

In the case of log-utility of leisure the optimal tax rate formula of equation 12 is the 

following: 

(20)   [ ] [ ] 




α



 ε=

τ−
τ

∞→∞→∞→∞→∞→

wlim)w(BlimUlim
w

lim
1

lim
wwcwww

, 

The efficiency effects collapses to Uc because ε=-VL for log-utility of leisure and we 

know from the first order condition that VL=Uc(1-τ)w. Thus, the efficiency effect 

component goes down as wage increases in the case of log-utility of leisure. Unlike 

the previous case the income effect works through three channels: efficiency effect, 

standard income effect and inequality aversion effect. A non-linear utility of 

consumption implies that the efficiency effect is not constant as in the linear case. The 

compensated elasticity of labor is affected by the marginal utility of consumption, and 

the efficiency effect component (ε/w) decreases as wage goes up where ε*=ε-1-1 and 

ε* is the compensated elasticity. 

 

Again, the product of the standard income effect and inequality aversion effect equals 

to one regardless of the exact type of utility of consumption. Hence, the asymptotic 

                                                 
5  When the compensated elasticity is 0.25 and 0.5, Saez's parameter k equals, respectively,  2 and 4. 
Our parameter b equals (1+k). 
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tax rate is determined by the particular form of the distribution effect and efficiency 

effect: 

(21)   
α
ε

=
τ−

τ
∞→∞→ ww

lim
1

lim  

 

In the case of log-utility of consumption the value of ε equals 2 because the optimal 

labor supply tends to 0.5 as wage goes to infinity, and the right hand side of equation 

21 goes to 2 over α. Assuming a Pareto distribution creates a force that drives the tax 

rate up. It turns out that the distribution effect is completely neutralized by the 

efficiency effect. Using simple algebra to compute the optimal asymptotic income tax 

rate one can get that the asymptotic tax rate equals to 2/(2+α) For example, the 

optimal asymptotic tax rate equals to 50% if α=2. 

 

In the case of -1/c utility of consumption, labor supply goes to zero and consequently 

ε goes to one. Once again, we know that the product of the standard income effect and 

inequality aversion effect equals to one regardless of the exact type of utility of 

consumption. So the RHS of equation 21 is equal to 1 over α. When α equals 2, the 

optimal asymptotic tax rate is 0.33. This figure is about a half compared to the 

asymptotic rate found in recent literature.  

 

In the next propositions we explore the optimal asymptotic tax rate using a lognormal 

distribution. There is a growing consensus that the Pareto distribution fits reasonably 

well the empirical earnings distribution at high income levels (Poterba and Feenberg, 

1993). However, the whole distribution is best characterized by lognormal distribution 

(Aitchison and Brown, 1957). Moreover, almost all simulations (until the nineties) 
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were based on a lognormal distribution.6 Deriving the optimal asymptotic tax rate for 

a lognormal distribution helps to link the more recent literature with previous results. 

In Section 4 we will characterize the shape of the optimal income tax structure for the 

case of a lognormal distribution. 

 

Proposition 4: 

With a lognormal distribution of earnings and a non-linear utility of consumption the 

optimal asymptotic tax rate converges to zero both for a constant (compensated) 

elasticity of labor and a log utility of leisure.  

 

Proof 

In this case equation 12 is as follows: 

 

(22)   
ϖ−

ε
=

τ−
τ

∞→∞→∞→∞→∞→ wlog
wslim*)w(Blim*Ulim*

w
lim

1
lim

wwcwww
, 

 

We know from the previous proofs that the product of the standard income effect and 

inequality aversion effect equals one both for linear and non-linear utility of 

consumption. Thus, we can rewrite the last equation: 

 

(23)    
ϖ−

ε
=

τ−
τ

∞→∞→ wlog
slim

1
lim

ww
 

It is well known for normal distribution that φ(w) which denotes 1 over the hazard 

rate of normal distribution goes to zero when w goes to infinity. This emphasizes once 

more the importance of the assumption on the distribution of earnings. 

                                                 
6  Mirrlees (1971), Tuomala (1984), Kanbur and Tuomala (1994). 
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In particular, with a constant compensated elasticity, the term (1-F)/fw dictates the 

optimal asymptotic tax rate. This term is constant for a Pareto distribution and goes to 

zero as wage goes to infinity using a lognormal distribution. Thus, a lognormal 

distribution pulls the optimal tax rate down at high levels of income compared to 

Pareto distribution. Note that when using a constant compensated elasticity of labor, 

this result holds regardless of the type of utility of consumption that is employed.  

 

The optimal asymptotic tax rate is zero with a log utility of leisure and a non-linear 

utility of consumption. Again,  ε tends to a finite number (the exact finite number 

depends on the type of non-linear utility of consumption we use) and the RHS of 23 

goes to zero as wage goes to zero. This case is particularly important because it 

replicates Mirrlees (1971) baseline simulation where he has used a log-utility of 

leisure, log-utility of consumption, lognormal distribution of skills and Utilitarian 

social welfare function.  In his main simulation Mirrlees have got a relatively low tax 

rate (15%) at very high levels of income (at the 99 percentile). Since then, many 

attempts were made to "correct" that low rate so as to be closer to actual tax rate at the 

top. 

 

Our analytical expression shows that Mirrlees simulation result is in fact a bad 

approximation for the optimal asymptotic tax rate. More important, deriving the 

optimal asymptotic income tax rate analytically uncovers the forces that lie behind it. 

The efficiency effect and distribution effect are the two forces that dictate the optimal 

asymptotic tax rate since, as before, the product of the standard income effect and 
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inequality aversion effect equals one. In this case, the efficiency effect drives the 

optimal asymptotic tax rate to zero as long as the utility of consumption is concave. 

 

4.  Characterization of the optimal shape with a lognormal distribution 

In this section we aim at characterizing the optimal shape of non-linear taxation when 

the distribution of earnings is lognormal. The lognormal distribution is the benchmark 

assumption for the whole distribution. 

For simplicity, the characterization is performed under the following assumptions: a 

log-linear (in leisure and consumption respectively) separable utility function, a 

utilitarian social planner (G’=1) and a lognormal distribution of skills. We 

characterize the optimal shape by using key values of the distribution - the mode, the 

median and the mean.  

 

A. The mode ( eµ σ− 2

) 

Marginal taxes decline at the mode. 

To show this claim we write the distribution effect D(w) and its first derivative D’(w): 

D w F w
f w

( ) ( )
( )

=
−1    

 D w F w f w f w F w
f w

f w F w
f w

' ( ) ' ( ) ( ) ' ( )[ ( )]
[ ( )]

' ( )[ ( )]
[ ( )]

=
− − −

= − −
−1 1 1

2 2
 

Since by definition f’(w)=0 at the mode, we conclude that D’(w) at the mode is -1, 

i.e., marginal tax rates decline. 
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B. The Median ( e µ ) 

If σ≈0.8 marginal taxes decline until the median and since then they rise (i.e., the 

minimum marginal tax is at the median). If  σ>(<)0.8 then the minimum point is at 

the right (left) of the median.  

To show this claim we use the formula for the minimum point as given in proposition 

1. This minimum is given where h(x)= σ + x, where h(x) is the standard normal 

hazard function. At the median x=0, so we look for the value of σ where h(0)= σ; i.e., 

0.7978 (see Lancaster, 1990, p. 48) . In order to see that a larger (lower) σ implies that 

the minimum point is to the right (left) of the median all we need is to characterize the 

minimum point for values of x lower (higher) than zero, by using the standard normal 

hazard table. 

 

C. The Mean ( eµ σ+0 5 2. ) 

If σ≈2 marginal taxes decline until the mean and since then they rise (i.e., the 

minimum marginal tax is at the mean). If  σ>(<)2 then the minimum point is at the 

right (left) of the mean. 

This claim can be shown by the same method, taking into account that in this case 

x=0.5 σ. 
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5. Summary and Conclusions   

Our paper provides a simple analytical expression for the optimal asymptotic tax rate 

that allows us to analyze the interactions between efficiency, income distribution and 

inequality aversion effects under the different cases analyzed in the literature 

following the seminal work by Mirrlees (1971). In particular, we explore the 

conditions under which the optimal tax rate is high or low at the top of the 

distribution. 

 

We found that in general the more recent literature on the optimal income tax at high 

levels of wage is based on assumptions that drive up the optimal tax rate in 

comparison to previous literature. First, the more recent works have used Pareto 

distribution, instead of log-normal, and it drives up the optimal income tax rate. 

Second, the more recent works have used a linear (instead of non-linear) utility of 

consumption and it also pulls up the asymptotic tax rate. Our paper shows that these 

two major changes would have been translated into an optimal tax rate of 100%. 

However, the more recent works have introduced a third change: a constant 

compensated elasticity instead of log-utility of leisure. That assumption ensures that 

the optimal tax rate is less than 100%. 

 

It is shown that with a Pareto distribution of earnings and a linear utility of 

consumption, the optimal asymptotic tax rate converges to a high tax rate. 

Surprisingly, the optimal income tax rate is in fact 100% for the most able individuals 

when the utility of leisure is logarithmic. The optimal tax rate is lower than 100% 

with a constant compensated labor elasticity but it is still relatively high- 60 percent. 
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However, when the utility of consumption is of the type -1/c, the optimal asymptotic 

tax rate tends to a rather low finite tax rate – around 30 percent.  

 

In general, a zero optimal asymptotic tax rate was obtained when using a lognormal 

distribution of earnings. With constant (compensated) elasticity of labor the optimal 

asymptotic tax rate is zero both for a linear and non-linear utility of consumption. 

With logarithmic utility of leisure, the optimal asymptotic tax rate converges to zero if 

the utility of consumption is non-linear.  
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Table 1 – The Optimal Asymptotic Tax Rate 
 

Marginal tax at high income levels (rate)   
Paper Schedule 0.99th asymptotic Our paper 

Linear Utility of Consumption      

Constant Labor Elasticity      

Pareto Diamond, Saez Rising  0.51a 0.6b 

Lognormal            -    0 

Log utility of leisure      

Pareto DS, Mirrlees Rising     -c 1d 1 

Lognormal DS, Mirrlees Rising     -e 1d 1 

      

Log Utility of Consumption      

Constant Labor Elasticity      

Pareto       Saez Rising     - 0.69f 0.6b 

Lognormal          -    0 

Log utility of leisure      

Pareto DS, Mirrlees Declining     -g Finited 0.5h 

Lognormal DS, Mirrlees Declining 0.15i 0d 0 

      

U = -1/C      

Constant Labor Elasticity      

Pareto          -    0.6b 

Lognormal          -    0 

Log utility of leisure      

Pareto     Mirrlees   Finited 0.33h 

Lognormal     Mirrlees   0d 0 
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Remarks:    
a.  Based on Saez (2001), Table 2. Assumptions: 0.5 constant compensated elasticity of labor 
and US calibrated income distribution. 
b. Assuming that the elasticity of labor is 0.5 and that the Pareto Distribution parameter is equal 
to 2 . 
c. Not reported by DS; However, in Figure 2a optimal tax rates rise steeply towards one. 
d. As reported by Mirrlees (1971). 
e. Not reported by DS; However, in Figure 2b optimal tax rates rise slowly. 
f. Assuming that the elasticity of labor is 0.5 and using a calibrated distribution of income in the 
US. 
g. Not reported by DS; However, in Figure 2a optimal tax rates decline slowly. 
h. Assuming that the Pareto Distribution parameter is equal to 2.  
i.  Based on Mirrless (1971), Table IV. Assumptions: a 0.39 standard deviation of log income  

and a Utilitarian Social Planner. 
 
  


