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The Weighting of the Bank of Israel CPI Forecast—a Unified Model 
 

Dana Orfaig (Flikier) 
 

The Bank of Israel Research Department’s inflation forecast is an important input in 
the formulation of monetary policy. The one month ahead forecast is currently based 
on a simple average of five models that project the change in the Consumer Price 
Index for the upcoming month. This paper proposes to weight the projections of the 
models differentially, and to assign one of them a negative weight. The new method 
enhances the precision of the forecast—an improvement of 50 percent in mean 
squared errors of out of sample tests. 
 
The results also indicate that including the model which was assigned a negative 
weight is preferable to removing it from the weighting. The paper presents a 
theoretical basis that illustrates the inherent benefit of using negative weighting, 
which derives from utilizing the positive correlation among model errors. 
Furthermore, professional literature and empirical results which support the 
theoretical basis are presented.  
 

 

מודל מאחד -שקלול תחזית בנק ישראל למדד המחירים לצרכן   

 דנה פליקר

 

 תקציר

תחזית האינפלציה שחטיבת המחקר עורכת הינה רכיב חשוב בעיצוב המדיניות המוניטרית. 

התחזית לחודש אחד קדימה מתבססת כיום על ממוצע פשוט של חמישה מודלים החוזים מהו 

השינוי שיחול במדד המחירים לצרכן בחודש הקרוב. מחקר זה מציע לשקלל את תחזיות 

חד מהם משקל שלילי. התוצאות מראות כי כאשר עוברים המודלים באופן שונה ולהעניק לא

משיטת השקלול הקיימת לשיטה החדשה, מוצאים שדיוק התחזית משתפר באופן משמעותי 

בממוצע ריבועי הסטיות במבחני 50%-(שיפור של  כ  out of sample).  עוד עולה מהתוצאות

מחקר מציג בסיס תיאורטי שהכללת המודל שקיבל משקל שלילי עדיפה על השמטתו מהשקלול. ה

הממחיש את התועלת הגלומה בשימוש במשקל שלילי, הנובעת מניצול המתאם החיובי בין סטיות 

.המודלים. בהמשך הוא מציג ספרות מקצועית ותוצאות אמפיריות התומכות בבסיס התיאורטי . 
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1. Introduction 

1.1 Theory 
The Bank of Israel Research Department’s one-month ahead inflation forecast is 
currently based on a simple mean of five models that predict the change in the CPI in 
the coming month.1 This study seeks the optimal method of weighting the forecasts of 
the models—the weighting method that minimizes the errors, measured in terms of 
mean squared error (MSE), from the actual CPI.  

To accomplish this, a methodology based on Modern Portfolio Theory (MPT) is 
used. According to MPT, an “efficient frontier” may be constructed given information 
about the distribution of asset returns and by exploiting the correlation among them. 
As a simple example, if asset A and asset B are negatively correlated, one would 
expect, in the event of an exogenous shock, the value of asset B to fall if that of asset 
A rises (and vice versa). In other words, due to the offset between the returns on those 
assets, a portfolio that includes both assets will be less risky (have lower variance) 
than one composed of uncorrelated assets or one asset only. If the assets are positively 
correlated, the level of risk may be mitigated by assigning a negative weight to one of 
the assets. (In practice, this is done by opening a short position in that asset.) In the 
event of an exogenous shock, one expects both assets to decline (or rise) in value 
concurrently. If asset values decline, an investor loses on asset A and gains on asset B, 
which s/he has sold short and which has fallen in value. Therefore, when a positive 
correlation exists, a less risky portfolio (i.e., one with smaller variance) can be 
constructed by using a negative weight. 

Similar reasoning applies to weighting the inflation forecasts. We are interested 
in maximizing the quality of the unified forecast—that is, minimizing the deviations 
of the unified forecast from the actual CPI. This can be accomplished by assigning 
weights utilizing the information implicit in the correlation among the errors of the 
forecasts, much as risk is mitigated in an asset portfolio. 

Specifically, if there is a negative correlation among the forecast errors, then 
using positive weights will minimize the errors of the weighted (unified) model. For 
example, when calculating a mean (or any combination of positive weights) 
composed of an above-forecast error and a below-forecast error, it will yield a more 
accurate result (more closely approximating the actual CPI). Similarly, if there is a 
positive correlation between the forecast errors, the use of weights with opposite signs 
will deliver a result that better approximates the actual CPI.2  

These conclusions can be expressed in mathematical form—the aim is to 
minimize the MSE of the unified model. For simplicity, a model for two forecasts is 
discussed first; further on, the general case is presented as well: 
 
(1) 2211 ˆˆˆ ewewec +=  

 

                                      
1 The models are shown in Appendix 1. 
2 A simple example will demonstrate this. Say that the two models’ errors are positively correlated, that 
both are biased upward a given month—one by 0.1 and the other by 0.3—and that they predict a CPI of 
0.6 and 0.8, respectively, while the actual CPI is 0.5. If one weights the models at 1.5 and (-0.5), 
respectively, one obtains a unified forecast of 0.5 (=1.5 0.8 )*0.5 -+(0.6* ), namely, the actual CPI. 
Utilizing the positive correlation between the errors of the models and using a negative weight offset 
the errors. Note that it is impossible to yield such an outcome using positive (or zero) weights. 
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(2) 2
22112211

2
2211 ))ˆˆ(()ˆˆvar())ˆˆ(( ewewEewewewewE +++=+  

 
where: 

cê  = errors of the unified model (random variable) 

1̂e  = errors of Model/Forecast 1 (random variable) 

2ê  = errors of Model/Forecast 2 (random variable) 

1w  = weight for Model 1 errors 

2w  = weight for Model 2 errors 

cσ  = S.D. of cê  

1σ  = S.D. of 1̂e  

2σ  = S.D. of 2ê  

12ρ  = correlation between 1ê  and 2ê . 

 
Assuming that the unified model has no systematic error— 0)ˆˆ( 2211 =+ ewewE —3 we 
get: 
 
(3) )ˆˆvar())ˆˆ(( 2211

2
2211 ewewewewE +=+  

 
That is, given a two-model forecast, composed of Model 1 and Model 2, error 

variance needs to be minimized. This is shown below:4 
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One may see that when the correlation is negative and the weights are positive, 

the last expression becomes negative and the variance of the weighted forecast’s 
errors decreases relative to a situation of correlation of zero. 

Similarly, when the correlation is positive, the last expression becomes negative 
only when the weights have opposite signs. In this manner, the error variance in the 
weighted forecast declines relative to a situation in which the correlation equals zero 
(and certainly relative to a situation where positive weights are used). 

The optimal weights obtained for the solution of a first-order condition (assuming 
that the weights sum to 1) are: 
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It is fairly straightforward to see that this yields the following conditions for the 

assignment of a negative weight: 

                                      
3 Stemming from the assumption that neither of the models has a systematic error. 
4 The weights cannot be resolved to zero because, assuming that the unified model is not systematically 
biased, the weights must sum to 1. This assumption is tested further on in this paper. 
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(7) 

1 0w < , when 
12 2 1/ρ σ σ>  

 
(8) 

2 0w < , when 12 1 2/ρ σ σ>  

 
Wherever no correlation exists between the model errors, i.e., 12ρ  = 0, the last 

expression representing the variance of the unified model zeros out and the following 
expression is obtained: 
 
(9) )ˆvar()ˆvar()ˆˆvar( 2
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The optimal weights obtained, respectively, are: 
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In such a case, the weights that minimize the variance of the weighted forecast’s 

errors are determined mainly by the forecasting quality of each constituent model. 
That is, the smaller the error variance in a given model, the larger the weight that it 
will receive (relative to the other model). For the optimal solution to be a simple 
mean, two conditions must be satisfied: identical error variance in both models and no 
correlation between the errors. 

It can also be seen that when the optimal weights are inserted into the variance 
function of the unified model’s errors (the function that was minimized), the 
expression obtained is by necessity smaller than the error variance of each forecast 
separately. Consequently, it is better to weight multiple forecasts than to use an 
individual forecast even if the latter is extremely accurate. 

Similarly, the general formula (for several models) for the description of error 
variance in the unified model is5: 
 

(11) 2 2 2 2c i i i j i j i j
i i i j

w w wσ σ σ σ ρ
≠

= +∑ ∑ ∑  

 
The mathematical development presented above therefore demonstrates the 

preference of using several models over using an individual forecast (even if it is the 
most accurate). It also shows that when there is no correlation between the models’ 
errors, the optimal weight that each model will receive depends on its forecasting 
quality. In contrast, when a correlation exists, the variance expression of the unified 
model’s errors expands: inserted into it is an expression that may become negative as 
a function of the correlation between the errors and of the signs of the weights. Thus, 
the expression may reduce the expected mean squared errors of the unified model. 

Given the proposition that the weights should have opposite signs (when the 
correlation between the errors is positive), the following question arises: which of 
them should receive negative weights and which should be assigned positive ones? To 

                                      
5 This formula is also used to calculate investment portfolio risk according to MPT, which was 
introduced in the previous subsection. 
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answer that, note that since the sum of the weights equals 1, the value of the sum of 
the positive weights will be greater—by 1—that the absolute value of the sum of the 
negative weights. Therefore, the negatively weighted models should have much 
greater errors to offset the errors of the positively weighted models, which carry much 
larger weights.6 This means that the models that have the larger error variance should 
be assigned negative weights. Another way to answer this question is that given the 
existence of two models, the negative weights must be smaller than the positive 
weights in absolute (and squared) terms (so that the weights sum to 1). Since the 
variance of the unified model is composed, among other things, of the product of each 
model’s error variance and the squares of its weights, then to minimize variance in the 
unified model it is better to multiply the model that has the larger variance by the 
squares of the smaller weights; this must by necessity be the negative weight. 
Therefore, generally speaking, one may assume that the model that has the larger 
errors will receive the negative sign.7 

This conclusion is consistent with the conditions for negative weighting 
(Equations 7 and 8 above). Observation of these conditions shows that, given a 
positive correlation (and less than 1, by definition), the forecast that has the larger 
error variance will receive the negative weight.8  

1.2 Literature review 
There is extensive literature dealing with the combination of forecasts. Bates and 
Granger (1969) and Newbold and Granger (1974) laid the foundations in this field, 
showing that this technique is preferable to the use of an individual forecast because 
even a less-accurate individual forecast contains information that may improve the 
total forecast. They find optimal weights by minimizing MSE; when the individual 
forecasts are not biased, this is identical to minimizing the error variance in the total 
forecast.9 

Dickinson (1975) offers an explanation for the use of negative weights and links 
their use to the correlation among the errors. His proof, much like that presented here, 
shows that when seeking optimal weights for two models that exhibit a (not weak) 
positive error correlation, one model will receive a positive weight and the other a 
negative one. Dickinson also sets out conditions that determine which of the models 
will receive which weight (positive/negative), resembling those in the previous 
subsection (Equations 7 and 8). 

Reinmuth and Geurts (1979) note that the use of weights in contrast to a simple 
mean improves the results markedly; their explanation relates to the strong correlation 
between the forecast errors. 

Winkler and Clemen (1992) present the sensitivity of the weights to a range of 
variables and show the probabilities of obtaining different weights. They note that 
when there is a strong positive correlation between the models’ errors, there is a high 
probability of assigning a negative weighting, even if the variances of the models’ 
errors are almost identical. (If no correlation exists, the optimal weighting would be a 

                                      
6 This is demonstrated in Footnote 3. 
7 A disclaimer to this is presented in the next footnote. 
8 The opposite—assigning the negative weight to the forecast that has the smaller error variance—is 
improbable. In certain cases, however, both models may receive positive weights; this happens when a 
positive correlation exists but is smaller than the ratio of the error variances. 
9 As presented in the previous subsection (Equation 3). 
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simple mean.) This study, too, tests the aforementioned issues by minimizing error 
variance of the total forecast. 

Bunn (1985), examining several ways of weighting models, offers several rules 
of thumb that link model weighting methods with sample size. He proposes that at the 
initial stage, when the number of observations is smaller than five, the models are to 
be weighted by the simple mean method. When the number of observations exceeds 
five and the model errors exhibit different variances, the MSE method is to be used 
for weighting. When the number of observations is smaller than twenty, the method 
should be used on the assumption that the correlations between the models’ errors 
zero out. Finally, when there are more than twenty observations, these correlations are 
presumably stable and the assumption can be loosened. In addition, Bunn presents 
conditions (identical to Equations 7 and 8 in section 1.1 above) for negative 
weighting.  

Another study—Hoeting, Madigan, Raftery and Volinsky (1999)—deals with 
model selection, the exclusion of less-accurate models from the weighted forecast. 
The authors contend that model weighting is preferable to model selection because 
model selection entails the disregard of important sources of information and because 
a forecast based on several models is more stable. 

Handbook of Economic Forecasting (2006) contains a chapter on combination of 
forecasts. It offers arguments in support of forecast weighting, e.g., it allows the use 
of all available information, avoids bias, and copes better with structural changes in 
the market. The chapter also draws a parallel between forecast weighting and asset 
portfolio diversification to minimize risks.10 Relating to the negative weight, the 
writer emphasizes that this is not the same as claiming that the negatively weighted 
forecast is valueless; instead, under certain conditions,11 given the correlations 
between the errors of the forecasts, these are the weights that MSE minimization 
yields (Timmermann, 2006). 

A study published by the Bank of England claims that the use of several forecasts 
is preferable to the use of just one because individual forecasts may be biased; when 
all are used, their biases may cancel each other out. The authors also claim that many 
wrongly think it better to use the most accurate forecast (the one with the smallest 
variance). This technique, however, yields suboptimal results because it fails to take 
into account the correlation between the forecast errors (Kapetanios, Labhard and 
Price, 2008). 

A similar study at the Bank of Israel (Blank, 2007) set out to find the optimal 
weighting of private analysts’ inflation forecasts. In the study, the weights were 
subjected to sign restrictions (only non-negative weights were allowed). The results 
showed that in the sample considered, the forecast weighted according to the weights 
obtained by MSE minimization was not significantly different from the simple mean. 
This may have been due to the sign restrictions. 

                                      
10 Much like the theoretical analogy presented at the beginning of the Introduction. 
11 The conditions described in the chapter are identical to those presented in Equations 7 and 8 in the 
previous subsection. 
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2. Methodology 

2.1 Data 
When the Bank of Israel’s Research Department formulates its one-month ahead CPI 
forecast, it uses a simple weighting (mean) of five models: econometric, statistical, 
single-equation, BVAR, and MIDAS. The data examined in the study relate to the 
period from October 2010 to July 2012 (twenty-two observations). Since the MIDAS 
model has been run regularly only since July 2011, it was forecast retroactively for 
the October 2010–June 2011 period with the help of vintage data.12  

The models include the interventions that are conventionally added to outcomes 
in cases where external information exists—changes in government-supervised prices 
(electricity, water, etc.), an increase in the Value Added Tax rate, etc. The inclusion of 
these interventions in the weighting mirrors the way the models are actually used and 
allows the models to be compared more accurately. Moreover, the results of the 
models without the interventions are not systematically recorded, and it is likely that 
different interventions were made in different models during part of the period. 
Therefore, in any event, the possibility of testing the models net of the interventions 
does not exist. 

2.2 Examining the weights 
To find the optimal weights for the models, the accepted method, of minimizing the 
mean squared errors of the unified model from the change in the actual Consumer 
Price Index, was used. This is done by using a numerical solution and also by an OLS 
estimation, defining the models’ forecasts as explanatory variables and changes in the 
actual CPI as the dependent variable. 

The estimated model is: 
 

tt exxxxxy +++++= 5544332211 βββββ  

 
 
The model is estimated without an intercept, it being assumed that the composite 

models have no systematic bias that would require the use of an intercept. This 
assumption will be tested further on in this paper. 

The results are also examined in view of restrictions on the sign (non-negative) of 
the weight and/or their sum (sum to 1). Therefore, the comparison includes four 
combinations of restrictions: 

1. restrictions on both the weights’ sign and sum: 0≥iβ , ∑ =1iβ ; 

2. restrictions on the weights’ sign (without restriction on sum): 0≥iβ ; 

3.  restriction on the weights’ sum (without restrictions on sign): ∑ =1iβ ; 

4. no restrictions whatsoever. 

                                      
12 The sample could not be enlarged because attempts to forecast the BVAR model retroactively proved 
unsuccessful: in retroactive forecasting over twenty-one months (January 2009–September 2010), 
sizable errors were obtained relative to the period examined, in which the model was run regularly. 
However, according to Bunn (1985), referenced in the literature review, twenty-two observations are a 
large enough sample for the MSE minimization method, allowing one to assume that the error 
correlations are stable. 
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3. Results 
Table 1 indicates that the model without restrictions and the model including only a 
sum restriction yield weights that improve in-sample forecasting quality.13 Square 
errors decline by 75 percent relative to the current method and by 65 percent relative 
to sign-restricted weights (Line 1). To quantify the absolute improvement—the extent 
of error reduction—root mean squared error (RMSE) data and mean absolute error 
(MAE) data (Lines 2 and 3, respectively) are presented. It may be seen that in the 
transition from simple weighting to unrestricted weights or weights including a 
restriction only on the sum, RMSE decreases by 0.1 (from  0.2 under the current 
method). 

It may also be seen that the coefficient of the weighted forecast will not be biased 
relative to 1 (with actual CPI change as the dependent variable). In this case, the Bank 
of Israel’s current weighted forecast (simple mean) receives a coefficient of 0.81 as 
against 1.02 in an unrestricted model and 0.97 in a model including a sum restriction 
only (Line 4). Note that the coefficient of the current Bank of Israel forecast shows 
that the forecast was biased due to the weighting method used. Notably, however, 
according to a Wald test, the coefficient (0.81) is not significantly different from 1. 

Furthermore, the quality of fit (R2) of the current Bank of Israel forecast is 0.53 
as against 0.84 in an unrestricted model or in one to which only a sum restriction 
applies (Line 5). 

 
 

Table 1. Weighting performance under various restrictions 
 Simple 

mean 
Sign and 
sum 
restrict-
ions 
(Option 1) 

Sign 
restrictions 
(Option 2) 

Sum 
restriction 
(Option 3) 

No 
restrictions 
(Option 4) 

1. *MSE
2

n

et∑
=  

0.04 
)0.09(  

0.03 
)0.06(  

0.03 
)0.05(  

0.01 
)0.02(  

0.01 
)0.02(  

2. RMSE MSE**=  0.2 0.17 0.17 0.1 0.1 

3 . MAE ***te

n
=
∑  

0.15 
)0.15(  

0.12 
)0.13(  

0.12 
)0.13(  

0.10 
)0.10(  

0.09 
)0.08(  

4. Coefficient**** 0.81 
)0.17(  

0.96 
)0.16(  

1.07 
)0.18(  

0.97 
)0.09(  

1.02 
)0.10(  

5. R2 0.53 0.64 0.64 0.84 0.84 
Standard deviations appear in parentheses. 

*  Mean Squared Error; **  Root Mean Squared Error; ***  Mean Absolute Error;  

**** OLS regression coefficient in a model with an intercept (the results without a intercept are 

similar). The dependent variable is the actual CPI; the explanatory variable is the forecast 

weighted in accordance with the optimal weights obtained under the restrictions. 
 

                                      
13 Notably, this is an ex post analysis. Therefore, an unrestricted model will by necessity provide a 
better explanation that any restricted model. An out-of-sample test is performed below. 
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Table 2 indicates that when sign restrictions are imposed, the weight of the 
single-equation model zeros out, causing the loss of information that may be helpful 
in forecasting. In this case, the weights obtained when the full set of models with sign 
restrictions are run (middle column) are identical to those obtained after the single-
equation model (with no sign restriction) is omitted.14 By inference, then, it is better 
to assign the single-equation model a negative weight than to omit it from the 
weighting because the omission causes MSE to increase considerably (Table 1, Line 
1).15  

Arguably, the estimation may suffer from a multicollinearity problem. Indeed, the 
correlations among the models’ errors fall into a range of 0.56–0.83. However, the 
insignificance of estimates that is typical of multicollinearity is not evident in the 
results at all, as all coefficients—apart from the BVAR coefficient—are statistically 
significant at a high level (Table 2). 

Table 2. Weights obtained under various restrictions16  
 Simple 

mean 
Sign and 
sum 
restrictions  
(Option 1) 

Sign 
restrictions 
(Option 2) 

Sum 
restriction 
(Option 3) 

No 
restrictions 
(Option 4) 

Econometric 0.2 0.12 0.11 
0.56 

)0.03(  
0.55 

Statistical 0.2 0.46 0.33 
0.48 

)0.00(  
0.4 

Single-equation 0.2 0 0 
0.76-  

)0.00(  
0.74-  

BVAR 
0.2 0.11 0.21 

0.22 
)0.20(  

0.27 

MIDAS 
0.2 0.31 0.21 

0.5 
)0.00(  

0.44 

Summing of 
weights 

1 1 0.87 1 0.92 

The p-values from the estimate appear in parentheses. 
 

3.1 Proposed weights 
As Table 1 shows, all indicators show very minor differences between the use of 
weights without restrictions (Option 4) and the use of weights with a sum restriction 
only (Option 3).  

A Wald test on the hypothesis that the coefficients in the no-restriction model 
sum to 1 shows that the hypothesis cannot be refuted (p-value: 0.41). Therefore, the 
weights proposed for use are restricted by sum only (shown in boldface in Table 2).17 

                                      
14 Positive weights were obtained for all four models. 
15 Similarly, the weights obtained under sum and sign restrictions (Column 2) are identical to the 
weighting obtained after omitting the single-equation model (with a sum restriction but without a sign 
restriction). 
16 The weights shown are those obtained by MSE minimization in a model with no intercept. Error 
variance minimization elicits very similar results. 
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The possibility of adding an intercept to the regression was also tested. 
Estimating the regression, it was found that the intercept is not significant (p-value: 
0.76). Another test was for whether a lagged error variable should be added to the 
estimation. Here, a Durbin-Watson (D-W) test revealed no serial correlation. 
Therefore, I decided to use the weights proposed (in a model lacking both an intercept 
and lags). 

The negative weight obtained for the single-equation model is consistent with the 
discussion in the Introduction, which found that one may assume negative weighting 
of the model with the highest error variance. Table 3, which presents descriptive 
statistics of the errors of the various models, shows error variances of 0.11 for the 
single-equation model and 0.04–0.06 for the other models. 

Table 3. Descriptive statistics of model errors 
 Econometric Statistical Single-

equation 
BVAR  MIDAS  

Mean squared 
error 

0.04 0.05 0.11 0.06 0.06 

Median squared 
error 

0.03 0.02 0.06 0.04 0.02 

Maximum error 
value 

0.59 0.50 0.99 0.69 0.60 

Minimum error 
value 

-0.21 -0.37 -0.41 -0.31 -0.56 

Error variance 0.04 0.05 0.11 0.06 0.05 
Error skewness 0.67 0.31 0.70 0.57 0.04 
Error kurtosis 3.28 2.56 3.74 3.27 3.31 
 

3.2 Models’ error correlations 
From the theory presented in the Introduction, it follows that if the errors of the 
models are positively correlated, the use of a negative weight will reduce errors of the 
weighted forecast and thus improve forecast accuracy. It was shown above that the 
use of a negative weight does, in fact, reduce errors of the weighted forecast. Now let 
us show that this decrease traces to the positive correlations among the errors of the 
models. This will support the argument that the positive correlations and the use of 
the negative weight are what caused the decrease. As Table 4 shows, there are strong 
positive correlations among the errors of the models, particularly between the single-
equation model and the other models. 

The especially strong correlations between the errors of the single-equation 
model and those of the other models are consistent with the fact that the single-
equation model received the negative weight. On the basis of the equations that 
determine which model should receive a negative weight (Equations 7 and 8), the 
stronger the error correlation among the models is and the wider the spread of the 
variances are, the greater the probability of being assigned a negative weight.18  

                                                                                                          
17 Theoretically, too, one would expect the weights to sum to 1 due to the assumption that the models 
are not systematically biased. 
18 Even though the equations were developed for a two-model weighted forecast, it is helpful to use 
them in understanding the general mechanism for the assignment of a negative weight. 
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Table 4. Error correlations among the models 
 Statistical MIDAS BVAR Econometric 
MIDAS 0.13    
BVAR 0.33 0.62   
Econometric 0.58 0.58 0.60  
Single-equation 0.59 0.73 0.71 0.86 
Correlations greater than 0.7 are in bold.  
 

A possible theoretical explanation for the correlations among errors of the models 
is the existence of an unobserved variable and/or a permanent change in the effects of 
a variable that none of the models captures. Therefore, the models tend to err in a 
similar direction. 

To test the fit between the data and theory, the total proposed weighted forecast 
may be divided into two parts: 

1. A positive component—the contribution of positively weighted models 
according to the proposed weights; 

2. A negative component—the contribution of negatively weighted models 
according to the proposed weights (in this case, only the single-equation 
model is negatively weighted). 

The closer the correlation between the errors of the two components is to (-1) 
(after the negative weight is added), the more the errors of the two components will be 
offset and the more accurate the forecast will be. In this case, given the negative 
weight, the correlation obtained between the errors of the negative component and 
those of the positive one is (-0.934).19 Again, these data reinforce the proposition that 
the major improvement in reducing MSE is explained by the use of error correlation, 
as presented in the Theory section. This outcome indicates that the optimal weights 
obtained sustain a very strong correlation between the errors of the two components 
of the forecast. By using this correlation and a negative weight, the proposed 
weighting allows a substantial minimization of errors, as shown. 

These matters are described graphically in Figure 1, which illustrates the errors 
and the result of their counteraction. The negative components (marked in blue) and 
the positive one (in red) are combined into one model (in green). This reduces the 
errors (brings them closer to the zero line).20  

                                      
19 After the deletion of an outlying observation (July 2011), a correlation of (-0.894) is obtained; 
therefore, it cannot be argued that the positive correlation among the forecast errors is based solely on 
exceptional observations. 
20 In the figure, the negative component is shown after multiplication by the negative weights. 
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Figure 1. Component errors and the proposed model 
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Figure 2 shows the squared errors of the method used today (simple mean—

marked in blue) and of the proposed weighting method (in green). The figure 
graphically demonstrates the major improvement that the proposed method allows 
(that is, the errors in the proposed method are closer to zero line).21  

Figure 2. Errors of the simple-mean method and the proposed model 
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21 It should be noted that this is an in-sample analysis. An out-of-sample examination follows in the 
next subsection. 
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3.3 Testing forecast quality and stability 

3.3.1 Forecast quality (out-of sample tests) 
To test forecast quality, an out-of sample test in two phases will be used. In Phase 1, 
optimal weights are calculated on the basis of a partial sample that includes 
observations from the beginning of the sample to a given month (in-sample). In Phase 
2, using a sample (out-of sample) that contains the month or months following the 
partial sample, the errors of the forecast that is calculated on the basis of the optimal 
weights found in Phase 1 relative to the actual CPI are examined. The test is 
performed by two methods: 

1. calculation of weights on the basis of part of the sample and forecasting to 
one step (one month) ahead; 

2. calculation of weights on the basis of part of the sample and forecasting for 
all months up to the end of the sample (cross-validation). 

Both tests were run several times on in-sample samples of different sizes (15–21 
observations). Table 5 shows the mean squared errors of all the tests and compares it 
with the weighting method used today (simple mean). 

Both tests found approximately a 50 percent improvement in out-of-sample 
forecasting when the current method is replaced with the proposed one. A Granger-
Newbold test (1976)22 shows that the proposed method improves the out-of-sample 
results considerably compared with the current method, at <0.1 percent significance. 

Table 5. Mean squared errors in out-of-sample test 
 Simple mean Proposed weights 
* MSE using Method 1 
(one month ahead) 

0.032 
)0.043(  
]0.18[  

0.017 
)0.016(  
]0.13[  

* MSE using Method 2 
(successive months) 

0.040 
)0.020(  

]0.2[  

0.020 
)0.006(  
]0.14[  

Standard deviations of the square errors appear in parentheses. Root mean squared errors (RMSE) 

appear in brackets. 

* Mean squared errors. 

3.3.2 Stability of weights—recursive estimation 
To examine the stability of the weights obtained, they were tested in a sample that 
increased from fifteen observations to twenty-two. This test resembles the updating of 
weights that will actually be used (at least initially) on the basis of a recursive sample. 

                                      
22 This test deals with the evaluation of forecasts; unlike other evaluation tests, it does not require the 
absence of contemporaneous correlation between the errors of the forecasts. 
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Table 6. Recursive weights 
 Model   /    

Sample size 
Econometric Statistical Single-

equation 

BVAR  MIDAS  

1 15 0.32 0.63 -0.70 0.12 0.62 

2 16 0.34 0.61 -0.70 0.17 0.58 

3 17 0.32 0.61 -0.68 0.16 0.59 

4 18 0.33 0.60 -0.67 0.16 0.58 

5 19 0.37 0.56 -0.67 0.19 0.55 

6 20 0.40 0.58 -0.69 0.19 0.52 

7 21 0.53 0.51 -0.76 0.19 0.54 

8 22 0.56 0.48 -0.76 0.22 0.50 

 
The results shown in Table 6 indicate that the signs of the weights remain 

constant but their values change in the transition from the partial sample (15 
observations) to the full one (22). The main changes are an increase in the weight of 
the econometric model (by 0.24) and a decline in that of the statistical one (by 0.15).23 

We now test to see whether the changes in the weight values, resulting from 
change in sample size, are meaningful in terms of reducing MSE. To accomplish this, 
we observe the MSE obtained in a sample of twenty-two observations, in which the 
weights were determined on the basis of a 15 observation sample (Table 6, Line 1), 
and compare it with weights determined on the basis of a 22 observation sample 
(Table 6, Line 8). The test yields an MSE of 0.015 when the Line 1 weights are used 
(fifteen observations—the smallest sample) as against 0.013 when the Line 8 weights 
(twenty-two observations—the largest sample) are used. The difference is minimal, 
especially relative to the MSE obtained via the use of the simple mean method 
(0.043). 

Finally, we test whether the results would be seriously affected if the sample 
were extended. To do this, a sample of forty-two observations (February 2009–July 
2012) for four models (omitting the BVAR model because it wasn’t calculated 
regularly during part of the period) is used. Observing the MSE in the forty-two-
observation sample using weights determined on the basis of a twenty-six-observation 
sample (small sample) 24 and comparing it with the use of weights determined by the 
forty-two-observation sample (long sample),25 MSEs of 0.046 and 0.042, respectively, 
were found. This negligible difference shows that the use of a long sample would not 
seriously modify the effectiveness of the weights in reducing MSE and that changes 
in the weights over time are also inconsequential in this respect.26 

                                      
23 A similar check for a model free of restrictions (in coefficient sum and sign) finds that the sum of the 
coefficients is not significantly different from 1 in samples of all sizes. 
24 Once the unified model begins to be used on a regular basis, it will have at least twenty-six 
observations. 
25 Recursive weights determined on the basis of samples of varying lengths are shown in Appendix 2. 
26 The MSEs obtained from the forty-two observation sample (excluding the BVAR model), mentioned 
in this paragraph, exceeded those obtained from the twenty-two observation sample (including BVAR) 
mentioned in the previous paragraph. This may be due to the omission of the BVAR model or to the 
difference in sample lengths. When the MSE was tested in the twenty-two observation sample 
excluding the BVAR model, a value of 0.015 was found. Therefore, the increase in MSE traces to the 
change in sample length and not to the omission of the BVAR model. 
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4. Implementation of the unified model 
Due to the sample size and the wish to maximize precision, the weights will be 
adjusted every month. That is, the optimal weights will be calculated on the basis of a 
sample that includes the previous month’s data. 

In addition to update frequency, changes in the models should be addressed. The 
various CPI forecasting models are occasionally revised to improve their estimation 
ability, meaning that the models which are weighted may change from time to time. 
Practically speaking, such changes will be considered on the basis of the following 
decision-making rule: if the change is minor, the existing weighting will remain in use 
and the change will be ignored, and if the change is meaningful, the model will be 
calculated as a new model and the forecasting will be redone retroactively with the 
help of vintage data. Note that the rule will also be applied to each model in the 
sample tested in this study. 

5. Conclusion 
The Research Department’s one-month ahead inflation forecast is currently based on 
a simple mean of five models that predict CPI change in the coming month. This 
study proposes differential weighting of the models’ forecasts and the assignment of a 
negative weight to one of them. The study began by reviewing the sources of 
inspiration for this proposal; they relate to exploiting the potential in a positive 
correlation among errors of the models, namely by weighting some of them 
negatively. Further on, the study presented empirical results that support its central 
proposition. The results show that when the existing weighting method is replaced 
with the new one, forecasting accuracy improves considerably (by around 50 percent 
in MSE in out-of-sample tests). The results also demonstrate that it is preferable to 
include the negatively weighted model rather than exclude it from the weighting. 

The Research Department’s inflation forecast is an important element in the 
formulation of monetary policy, which aims to maintain price stability. An 
improvement in this indicator will supply policymakers with more accurate forecasts 
and improve their decision making. 

The study also establishes grounds for the insight that the use of a negative 
weight in the weighting of forecasts allows us to exploit positive correlations among 
errors. This insight may be useful in weighting forecasts of other economic variables 
and improving the Bank of Israel’s forecasting ability in different contexts. 
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7. Appendices 

Appendix 1. CPI forecasting models  
1. Statistical model—based on separate forecasts for each of the ten main 

components of the CPI (several components are divided into subcomponents) 
(Suhoy & Rotberger, 2006). 

2. Econometric model—based on the Phillips curve approach and generates a 
forecast for the overall CPI by forecasting a “core” index—the CPI excluding 
fruit and vegetables, clothing and footwear, energy, and housing (Ilek, 2006). 

3. BVAR model—a VAR model estimate that applies a Bayesian method to a set of 
variables: the CPI excluding housing, the housing component, inflation 
expectations, exchange-rate changes, the Bank of Israel interest rate, exports, and 
private consumption. 

4. Single equation model—an autoregressive equation for the price index and a 
separate equation for the housing component of the CPI (Sorezcky, 2009). 

5. MIDAS model—based on data of differing frequencies; it allows the inclusion of 
financial data and global commodity prices with daily frequency by adjusting 
distributions (Ribon & Suhoy, 2011). 

Appendix 2. Recursive weights and an expanded sample omitting the BVAR model 

Model / 
Sample size 

MIDAS  Single-
equation 

Econometric Statistical 

26 0.29 0.24 0.09 0.38 
28 0.32 0.17 0.10 0.41 
30 0.34 -0.02 0.11 0.58 
32 0.39 -0.07 0.11 0.58 
34 0.40 -0.08 0.11 0.57 
36 0.38 -0.06 0.15 0.53 
38 0.38 -0.07 0.15 0.54 
40 0.36 -0.07 0.17 0.55 
42 0.38 -0.12 0.26 0.48 

 
 


