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The Weighting of the Bank of Israel CPI Forecast—aJnified Model
Dana Orfaig (Flikier)

The Bank of Israel Research Department’s inflafaecast is an important input in
the formulation of monetary policy. The one montiead forecast is currently based
on a simple average of five models that projecictienge in the Consumer Price
Index for the upcoming month. This paper proposeasdight the projections of the
models differentially, and to assign one of thenegative weight. The new method
enhances the precision of the forecast—an improxenfeés0 percent in mean
squared errors of out of sample tests.

The results also indicate that including the madakch was assigned a negative
weight is preferable to removing it from the weiglgt The paper presents a
theoretical basis that illustrates the inherenelffienf using negative weighting,
which derives from utilizing the positive corretatiamong model errors.
Furthermore, professional literature and empiniealilts which support the
theoretical basis are presented.
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1. Introduction

1.1  Theory

The Bank of Israel Research Department's one-maihiad inflation forecast is
currently based on a simple mean of five models ghedict the change in the CPI in
the coming month.This study seeks the optimal method of weightheyforecasts of
the models—the weighting method that minimizes éhers, measured in terms of
mean squared error (MSE), from the actual CPI.

To accomplish this, a methodology based on Modemtfdtio Theory (MPT) is
used. According to MPT, an “efficient frontier” még constructed given information
about the distribution of asset returns and by @uph the correlation among them.
As a simple example, if asset A and asset B arativey correlated, one would
expect, in the event of an exogenous shock, theevall asset B to fall if that of asset
A rises (and vice versa). In other words, due &dfiset between the returns on those
assets, a portfolio that includes both assets belless risky (have lower variance)
than one composed of uncorrelated assets or oaea@dy. If the assets are positively
correlated, the level of risk may be mitigated Bgigning a negative weight to one of
the assets. (In practice, this is done by openispaat position in that asset.) In the
event of an exogenous shock, one expects bothsaselecline (or rise) in value
concurrently. If asset values decline, an invelstees on asset A and gains on asset B,
which s/he has sold short and which has fallenalue. Therefore, when a positive
correlation exists, a less risky portfolio (i.eneowith smaller variance) can be
constructed by using a negative weight.

Similar reasoning applies to weighting the inflatifmrecasts. We are interested
in maximizing the quality of the unified forecasthat is, minimizing the deviations
of the unified forecast from the actual CPI. Thede accomplished by assigning
weights utilizing the information implicit in theooelation among the errors of the
forecasts, much as risk is mitigated in an assefqho.

Specifically, if there is a negative correlation arg the forecast errors, then
using positive weights will minimize the errorstbe weighted (unified) model. For
example, when calculating a mean (or any combinatid positive weights)
composed of an above-forecast error and a belogeést error, it will yield a more
accurate result (more closely approximating theia@cC€PI). Similarly, if there is a
positive correlation between the forecast errdrs,use of weights with opposite signs
will deliver a result that better approximates #ogual CPF

These conclusions can be expressed in mathemdbtoal—the aim is to
minimize the MSE of the unified model. For simpljcia model for two forecasts is
discussed first; further on, the general caseasgnted as well:

(1) € = w,& + W,E,

! The models are shown in Appendix 1.

2 A simple example will demonstrate this. Say thattwo models’ errors are positively correlatedf th
both are biased upward a given month—one by 0.%ledther by 0.3—and that they predict a CPI of
0.6 and 0.8, respectively, while the actual CP0.5. If one weights the models at 1.5 and (-0.5),
respectively, one obtains a unified forecast of (:%.50.6+(-0.5)*0.§, namely, the actual CPI.
Utilizing the positive correlation between the esrof the models and using a negative weight offset
the errors. Note that it is impossible to yieldlsan outcome using positive (or zero) weights.
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(2) E(w,& +W,6,)%) = var(w,& + w,6&,) + (E(w,6, + w,E,))?

where:

e = errors of the unified model (random variable)
é = errors of Model/Forecast 1 (random variable)
& = errors of Model/Forecast 2 (random variable)
W, = weight for Model 1 errors

w, = weight for Model 2 errors

o, =S.D.ofé

o, =S.D.ofg
o, =S.D.ofg
P, = correlation betweeB, andé,.

Assuming that the unified model has no systematiare-E(w,& +w,&,) = 0—° we
get:

(3) E((Wlél + Wzéz)z) = Var(Wlél + Wzéz)

That is, given a two-model forecast, composed otiddl and Model 2, error
variance needs to be minimized. This is shown b&low

4 var(w,é, + W,&,) = w,” var( &) + w,” var(&,) + 2w,w, cov( &,,8é,) =

w,” var(é,) + w,” var(é,) + 2w,w,c,0,p,,

One may see that when the correlation is negatidetlae weights are positive,
the last expression becomes negative and the eariah the weighted forecast's
errors decreases relative to a situation of cdrogiaf zero.

Similarly, when the correlation is positive, thestl@xpression becomes negative
only when the weights have opposite signs. In méner, the error variance in the
weighted forecast declines relative to a situatiowhich the correlation equals zero
(and certainly relative to a situation where pesitiveights are used).

The optimal weights obtained for the solution difst-order condition (assuming
that the weights sum to 1) are:

(5) s O3 = P00, _ 0,(0, = p1201)
0'12+022—2p120102 (51_0'2)2"‘2510'2(1_:012)

Wy

(6) W= 0f = P1,010, _ 0,(0, — p1205)
2

0'12 + 0'22 —2p,0.0, (0,— 0'2)2 +20,0,1-pyy)

It is fairly straightforward to see that this yislthe following conditions for the
assignment of a negative weight:

% Stemming from the assumption that neither of tieelefs has a systematic error.
* The weights cannot be resolved to zero becauserasg that the unified model is not systematically
biased, the weights must sum to 1. This assumgitasted further on in this paper.
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(7) w <0, whenp,>o,/o,
(8) w, <0, whenp, >0, /0,

Wherever no correlation exists between the modelrri.e., p,, = 0, the last
expression representing the variance of the unifiedel zeros out and the following
expression is obtained:

9)  var(w,é + w,8&,) =w,’var( &)+ w,’ var( &,)

The optimal weights obtained, respectively, are:

2 2
(10) W; — O-l y H — 0-2
ol +a; ol +os

In such a case, the weights that minimize the wagaf the weighted forecast’s
errors are determined mainly by the forecastinglityuaf each constituent model.
That is, the smaller the error variance in a giwerdel, the larger the weight that it
will receive (relative to the other model). For tbptimal solution to be a simple
mean, two conditions must be satisfied: identicadrevariance in both models and no
correlation between the errors.

It can also be seen that when the optimal weigtdsreserted into the variance
function of the unified model's errors (the functidhat was minimized), the
expression obtained is by necessity smaller thanethor variance of each forecast
separately. Consequently, it is better to weighttiple forecasts than to use an
individual forecast even if the latter is extremabcurate.

Similarly, the general formula (for several moddis) the description of error
variance in the unified modePis

1) 2= wio+ > > 2ww o0 p;

i i# ]

The mathematical development presented above tnereflemonstrates the
preference of using several models over using divigual forecast (even if it is the
most accurate). It also shows that when there isamcelation between the models’
errors, the optimal weight that each model willeige depends on its forecasting
guality. In contrast, when a correlation exist® Hariance expression of the unified
model’s errors expands: inserted into it is an eggion that may become negative as
a function of the correlation between the errord ahthe signs of the weights. Thus,
the expression may reduce the expected mean soeraoed of the unified model.

Given the proposition that the weights should hapeosite signs (when the
correlation between the errors is positive), thikofang question arises: which of
them should receive negative weights and which Ishioel assigned positive ones? To

® This formula is also used to calculate investmeaitfolio risk according to MPT, which was
introduced in the previous subsection.



answer that, note that since the sum of the weightsls 1, the value of the sum of
the positive weights will be greater—by 1—that #iesolute value of the sum of the
negative weights. Therefore, the negatively weighteodels should have much
greater errors to offset the errors of the podyiveeighted models, which carry much
larger weight€. This means that the models that have the larger eariance should
be assigned negative weights. Another way to anslwerquestion is that given the
existence of two models, the negative weights nigstsmaller than the positive
weights in absolute (and squared) terms (so thatwbights sum to 1). Since the
variance of the unified model is composed, amohegrathings, of the product of each
model’s error variance and the squares of its wejghen to minimize variance in the
unified model it is better to multiply the modelathhas the larger variance by the
squares of the smaller weights; this must by négyese the negative weight.
Therefore, generally speaking, one may assumetligatnodel that has the larger
errors will receive the negative sign.

This conclusion is consistent with the conditionsr fnegative weighting
(Equations 7 and 8 above). Observation of thesalitons shows that, given a
positive correlation (and less than 1, by defimj}jothe forecast that has the larger
error variance will receive the negative weitht.

1.2 Literature review

There is extensive literature dealing with the corabon of forecasts. Bates and
Granger (1969) and Newbold and Granger (1974) tleédfoundations in this field,
showing that this technique is preferable to the afsan individual forecast because
even a less-accurate individual forecast contaif@rmation that may improve the
total forecast. They find optimal weights by minamg MSE; when the individual
forecasts are not biased, this is identical to mizing the error variance in the total
forecast’

Dickinson (1975) offers an explanation for the ng@megative weights and links
their use to the correlation among the errors.gfi®f, much like that presented here,
shows that when seeking optimal weights for two et®dhat exhibit a (not weak)
positive error correlation, one model will receiaepositive weight and the other a
negative one. Dickinson also sets out conditioas$ tletermine which of the models
will receive which weight (positive/negative), redading those in the previous
subsection (Equations 7 and 8).

Reinmuth and Geurts (1979) note that the use ofjv®iin contrast to a simple
mean improves the results markedly; their explanatelates to the strong correlation
between the forecast errors.

Winkler and Clemen (1992) present the sensitivityhe weights to a range of
variables and show the probabilities of obtaininiecent weights. They note that
when there is a strong positive correlation betwidenmodels’ errors, there is a high
probability of assigning a negative weighting, evkethe variances of the models’
errors are almost identical. (If no correlationstsj the optimal weighting would be a

® This is demonstrated in Footnote 3.

" A disclaimer to this is presented in the next foé.

8 The opposite—assigning the negative weight toftiecast that has the smaller error variance—is
improbable. In certain cases, however, both moihalg receive positive weights; this happens when a
positive correlation exists but is smaller thanrhigo of the error variances.

° As presented in the previous subsection (Equé&jon
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simple mean.) This study, too, tests the aforeroeat issues by minimizing error
variance of the total forecast.

Bunn (1985), examining several ways of weightingdels, offers several rules
of thumb that link model weighting methods with sdensize. He proposes that at the
initial stage, when the number of observationgmalier than five, the models are to
be weighted by the simple mean method. When thebeumf observations exceeds
five and the model errors exhibit different variascthe MSE method is to be used
for weighting. When the number of observationsneier than twenty, the method
should be used on the assumption that the cowektbetween the models’ errors
zero out. Finally, when there are more than tweliservations, these correlations are
presumably stable and the assumption can be lodsémeddition, Bunn presents
conditions (identical to Equations 7 and 8 in smttil.1 above) for negative
weighting.

Another study—Hoeting, Madigan, Raftery and Volinsfd999)—deals with
model selection, the exclusion of less-accurate aisoffom the weighted forecast.
The authors contend that model weighting is préleréo model selection because
model selection entails the disregard of importmirces of information and because
a forecast based on several models is more stable.

Handbook of Economic Forecasting (2006) contains a chapter on combination of
forecasts. It offers arguments in support of foseeeeighting, e.g., it allows the use
of all available information, avoids bias, and c®fetter with structural changes in
the market. The chapter also draws a parallel tvierecast weighting and asset
portfolio diversification to minimize risk¥. Relating to the negative weight, the
writer emphasizes that this is not the same aseigi that the negatively weighted
forecast is valueless; instead, under certain ¢omdi’' given the correlations
between the errors of the forecasts, these aravéights that MSE minimization
yields (Timmermann, 2006).

A study published by the Bank of England claimg tha use of several forecasts
is preferable to the use of just one because iddaliforecasts may be biased; when
all are used, their biases may cancel each otheiTba authors also claim that many
wrongly think it better to use the most accuratedast (the one with the smallest
variance). This technique, however, yields subogitirasults because it fails to take
into account the correlation between the forecasire (Kapetanios, Labhard and
Price, 2008).

A similar study at the Bank of Israel (Blank, 20G&t out to find the optimal
weighting of private analysts’ inflation forecasts. the study, the weights were
subjected to sign restrictions (only non-negativaghts were allowed). The results
showed that in the sample considered, the forewaigihted according to the weights
obtained by MSE minimization was not significandifferent from the simple mean.
This may have been due to the sign restrictions.

19 Much like the theoretical analogy presented abiginning of the Introduction.
M The conditions described in the chapter are idehtb those presented in Equations 7 and 8 in the
previous subsection.



2. Methodology

2.1 Data

When the Bank of Israel’'s Research Department ftates its one-month ahead CPI
forecast, it uses a simple weighting (mean) of fivedels: econometric, statistical,
single-equation, BVAR, and MIDAS. The data examimedhe study relate to the
period from October 2010 to July 2012 (twenty-twiservations). Since the MIDAS
model has been run regularly only since July 2@ldas forecast retroactively for
the October 2010-June 2011 period with the helprafige datd?

The models include the interventions that are cohweally added to outcomes
in cases where external information exists—changg®vernment-supervised prices
(electricity, water, etc.), an increase in the \éaRdded Tax rate, etc. The inclusion of
these interventions in the weighting mirrors theywse models are actually used and
allows the models to be compared more accuratelytebver, the results of the
models without the interventions are not systeraflfiaecorded, and it is likely that
different interventions were made in different misdduring part of the period.
Therefore, in any event, the possibility of testthg models net of the interventions
does not exist.

2.2 Examining the weights

To find the optimal weights for the models, theegated method, of minimizing the
mean squared errors of the unified model from thenge in the actual Consumer
Price Index, was used. This is done by using a nigaiesolution and also by an OLS
estimation, defining the models’ forecasts as enqilary variables and changes in the
actual CPI as the dependent variable.

The estimated model is:

Yo = DX+ BoXo + BaXs + BuX, + PsXs + €

The model is estimated without an intercept, ingeassumed that the composite
models have no systematic bias that would requiee use of an intercept. This
assumption will be tested further on in this paper.

The results are also examined in view of restmdion the sign (non-negative) of
the weight and/or their sum (sum to 1). Therefdh® comparison includes four
combinations of restrictions:

restrictions on both the weights’ sign and sy# 0, Z,Bi =1,

2. restrictions on the weights’ sign (without regton on sum):5 > 0;
3. restriction on the weights’ sum (without redions on sign):Zﬂi =1;
4. no restrictions whatsoever.

2 The sample could not be enlarged because attémfirecast the BVAR model retroactively proved
unsuccessful: in retroactive forecasting over tyenmte months (January 2009-September 2010),
sizable errors were obtained relative to the pegradmined, in which the model was run regularly.
However, according to Bunn (1985), referenced @literature review, twenty-two observations are a
large enough sample for the MSE minimization methallowing one to assume that the error
correlations are stable.



3. Results

Table 1 indicates that the model without restritsi@nd the model including only a
sum restriction yield weights that improve in-saenfibrecasting quality’ Square
errors decline by 75 percent relative to the curneethod and by 65 percent relative
to sign-restricted weights (Line 1). To quantifg thbsolute improvement—the extent
of error reduction—root mean squared error (RMS&pcnd mean absolute error
(MAE) data (Lines 2 and 3, respectively) are présénlt may be seen that in the
transition from simple weighting to unrestricted ighgs or weights including a
restriction only on the sum, RMSE decreases by(®dm 0.2 under the current
method).

It may also be seen that the coefficient of thegveid forecast will not be biased
relative to 1 (with actual CPI change as the depenhdariable). In this case, the Bank
of Israel’'s current weighted forecast (simple meaateives a coefficient of 0.81 as
against 1.02 in an unrestricted model and 0.97nmdel including a sum restriction
only (Line 4). Note that the coefficient of the rent Bank of Israel forecast shows
that the forecast was biased due to the weightiethod used. Notably, however,
according to a Wald test, the coefficient (0.81nas$ significantly different from 1.

Furthermore, the quality of fit @ of the current Bank of Israel forecast is 0.53
as against 0.84 in an unrestricted model or in tonehich only a sum restriction
applies (Line 5).

Table 1. Weighting performance under various restritions

Simple | Sign and | Sign Sum No
mean sum restrictions| restriction | restrictions
restrict- (Option 2) | (Option 3) | (Option 4)
ions
(Option 1)
L MSE = de 0.04 0.03 0.03 0.01 0.01
' T n (0.09 (0.06 (0.05 (0.02 (0.02
2RMSE=+/ MSE ** 0.2 0.17 0.17 0.1 0.1
3MAE - Dl 0.15 0.12 0.12 0.10 0.09
' T (0.15 (0.13 (0.13 (0.10 (0.08
4. Coefficient**** 0.81 0.96 1.07 0.97 1.02
(0.17) (0.16 (0.18 (0.09 (0.10
5. R 0.53 0.64 0.64 0.84 0.84

Standard deviations appear in parentheses.

* Mean Squared Error; ** Root Mean Squared Erttt; Mean Absolute Error;

*xx QLS regression coefficient in a model with @mtercept (the results without a intercept are
similar). The dependent variable is the actual @#;explanatory variable is the forecast
weighted in accordance with the optimal weightsaoted under the restrictions.

13 Notably, this is an ex post analysis. Thereforeuarestricted model will by necessity provide a
better explanation that any restricted model. Anaftsample test is performed below.
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Table 2 indicates that when sign restrictions an@ased, the weight of the
single-equation model zeros out, causing the légsformation that may be helpful
in forecasting. In this case, the weights obtawbén the full set of models with sign
restrictions are run (middle column) are identitakthose obtained after the single-
equation model (with no sign restriction) is omitté By inference, then, it is better
to assign the single-equation model a negative hteigan to omit it from the
welisghting because the omission causes MSE to isereansiderably (Table 1, Line
1).

Arguably, the estimation may suffer from a multiow@arity problem. Indeed, the
correlations among the models’ errors fall intoaage of 0.56—0.83. However, the
insignificance of estimates that is typical of nudtlinearity is not evident in the
results at all, as all coefficients—apart from BEAR coefficient—are statistically
significant at a high level (Table 2).

Table 2. Weights obtained under various restrictios™®

Simple | Signand | Sign Sum No
mean sum restrictions| restriction | restrictions
restrictions| (Option 2) | (Option 3) | (Option 4)
(Option 1)
Econometric 0.2 0.12 0.11 0.56 055
) ) ) (0.03 )
L 0.48
Statistical 0.2 0.46 0.33 (0.00 0.4
. ) -0.76
Single-equation 0.2 0 0 (0.00 -0.74
BVAR 0.22
0.2 0.11 0.21 (0.20 0.27
MIDAS 0.5
0.2 0.31 0.21 (0.00 0.44
Summing of 1 1 0.87 1 0.92
weights

The p-values from the estimate appear in parenghese

3.1 Proposed weights

As Table 1 shows, all indicators show very mindifedlences between the use of
weights without restrictions (Option 4) and the wv$eveights with a sum restriction
only (Option 3).

A Wald test on the hypothesis that the coefficieintshe no-restriction model
sum to 1 shows that the hypothesis cannot be cefjteralue: 0.41). Therefore, the
weights proposed for use are restricted by sum @higwn in boldface in Table 2.

4 positive weights were obtained for all four models

15 Similarly, the weights obtained under sum and sigstrictions (Column 2) are identical to the
weighting obtained after omitting the single-eqoatmodel (with a sum restriction but without a sign
restriction).

® The weights shown are those obtained by MSE mimition in a model with no intercept. Error
variance minimization elicits very similar results.
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The possibility of adding an intercept to the resgren was also tested.
Estimating the regression, it was found that theraept is not significant (p-value:
0.76). Another test was for whether a lagged evesrable should be added to the
estimation. Here, a Durbin-Watson (D-W) test regdalno serial correlation.
Therefore, | decided to use the weights proposed (hodel lacking both an intercept
and lags).

The negative weight obtained for the single-equratimdel is consistent with the
discussion in the Introduction, which found thaeanay assume negative weighting
of the model with the highest error variance. TaBJewhich presents descriptive
statistics of the errors of the various modelswsherror variances of 0.11 for the
single-equation model and 0.04—0.06 for the othedets.

Table 3. Descriptive statistics of model errors

Econometric | Statistical | Single- BVAR MIDAS
equation
Mean squared 0.04 0.05 0.11 0.06 0.06
error
Median squared 0.03 0.02 0.06 0.04 0.02
error
Maximum error 0.59 0.50 0.99 0.69 0.60
value
Minimum error 0.21 -0.37 -0.41 -0.31 -0.56
value
Error variance 0.04 0.05 0.11 0.06 0.05
Error skewness 0.67 0.31 0.70 0.57 0.04
Error kurtosis 3.28 2.56 3.74 3.27 3.31

3.2 Models’ error correlations

From the theory presented in the Introduction,oitofvs that if the errors of the
models are positively correlated, the use of a tingaveight will reduce errors of the
weighted forecast and thus improve forecast acguihavas shown above that the
use of a negative weight does, in fact, reducewbthe weighted forecast. Now let
us show that this decrease traces to the positimelations among the errors of the
models. This will support the argument that theitpa@s correlations and the use of
the negative weight are what caused the decreas&able 4 shows, there are strong
positive correlations among the errors of the mededhrticularly between the single-
equation model and the other models.

The especially strong correlations between thererad the single-equation
model and those of the other models are consistéht the fact that the single-
equation model received the negative weight. Onlthsis of the equations that
determine which model should receive a negativeglwtefEquations 7 and 8), the
stronger the error correlation among the modeland the wider the spread of the
variances are, the greater the probability of beisgigned a negative weidfit.

Y Theoretically, too, one would expect the weigbtstm to 1 due to the assumption that the models
are not systematically biased.

18 Even though the equations were developed for antedel weighted forecast, it is helpful to use
them in understanding the general mechanism foaskgnment of a negative weight.
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Table 4. Error correlations among the models

Statistical MIDAS BVAR Econometric
MIDAS 0.13
BVAR 0.33 0.62
Econometric 0.58 0.58 0.60
Single-equation 0.59 0.73 0.71 0.86

Correlations greater than 0.7 are in bold.

A possible theoretical explanation for the coriielad among errors of the models
is the existence of an unobserved variable andgaraanent change in the effects of
a variable that none of the models captures. Tamrethe models tend to err in a
similar direction.

To test the fit between the data and theory, tha fwoposed weighted forecast
may be divided into two parts:

1. A positive component—the contribution of posti weighted models

according to the proposed weights;

2. A negative component—the contribution of negdtivweighted models
according to the proposed weights (in this casdy tme single-equation
model is negatively weighted).

The closer the correlation between the errors eftéo components is to (-1)
(after the negative weight is added), the moreetihers of the two components will be
offset and the more accurate the forecast will Ibethis case, given the negative
weight, the correlation obtained between the erofrthe negative component and
those of the positive one is (-0.934)Again, these data reinforce the proposition that
the major improvement in reducing MSE is explaibgdhe use of error correlation,
as presented in the Theory section. This outcordeates that the optimal weights
obtained sustain a very strong correlation betwbenrerrors of the two components
of the forecast. By using this correlation and agatee weight, the proposed
weighting allows a substantial minimization of eés,cas shown.

These matters are described graphically in Figunehich illustrates the errors
and the result of their counteraction. The negatimmponents (marked in blue) and
the positive one (in red) are combined into one ehdoh green). This reduces the
errors (brings them closer to the zero liffe).

19 After the deletion of an outlying observation @@011), a correlation of (-0.894) is obtained;
therefore, it cannot be argued that the positiveetation among the forecast errors is based solely
exceptional observations.

2 |n the figure, the negative component is showeraftultiplication by the negative weights.
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Figure 1. Component errors and the proposed model
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Figure 2 shows the squared errors of the method tesday (simple mean—
marked in blue) and of the proposed weighting metlim green). The figure
graphically demonstrates the major improvement that proposed method allows
(that is, the errors in the proposed method arseclm zero linej!

Figure 2. Errors of the simple-mean method and theroposed model
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2L |t should be noted that this is an in-sample asislyAn out-of-sample examination follows in the

next subsection.
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3.3  Testing forecast quality and stability

3.3.1 Forecast quality (out-of sample tests)

To test forecast quality, an out-of sample tedinio phases will be used. In Phase 1,
optimal weights are calculated on the basis of digbasample that includes
observations from the beginning of the sample govan month (in-sample). In Phase
2, using a sample (out-of sample) that containsntibath or months following the
partial sample, the errors of the forecast thaaisulated on the basis of the optimal
weights found in Phase 1 relative to the actual @R examined. The test is
performed by two methods:

1. calculation of weights on the basis of parthe sample and forecasting to

one step (one month) ahead;

2. calculation of weights on the basis of parthte sample and forecasting for

all months up to the end of the sample (cross-atbd).

Both tests were run several times on in-sample Bsngd different sizes (15-21
observations). Table 5 shows the mean squaredsesfall the tests and compares it
with the weighting method used today (simple mean).

Both tests found approximately a 50 percent impmoat in out-of-sample
forecasting when the current method is replaced tie proposed one. A Granger-
Newbold test (1978% shows that the proposed method improves the os&wiple
results considerably compared with the current otttht <0.1 percent significance.

Table 5. Mean squared errors in out-of-sample test

Simple mean Proposed weights
* MSE using Method 1 0.032 0.017
(one month ahead) (0.043 (0.019
[0.1§ [0.13
* MSE using Method 2 0.040 0.020
(successive months) (0.020 (0.008
[0.7 [0.14

Standard deviations of the square errors appeaaiantheses. Root mean squared errors (RMSE)
appear in brackets.
* Mean squared errors.

3.3.2 Stability of weights—recursive estimation

To examine the stability of the weights obtaindtkyt were tested in a sample that
increased from fifteen observations to twenty-tWbis test resembles the updating of
weights that will actually be used (at least irigiaon the basis of a recursive sample.

%2 This test deals with the evaluation of forecastdike other evaluation tests, it does not reqthee
absence of contemporaneous correlation betweegrtbes of the forecasts.
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Table 6. Recursive weights

Model / Econometric | Statistical Single- BVAR MIDAS

Sample size equation
1 15 0.32 0.63 -0.70 0.12 0.62
2 16 0.34 0.61 -0.70 0.17 0.58
3 17 0.32 0.61 -0.68 0.16 0.59
4 18 0.33 0.60 -0.67 0.16 0.58
5 19 0.37 0.56 -0.67 0.19 0.55
6 20 0.40 0.58 -0.69 0.19 0.52
7 21 0.53 0.51 -0.76 0.19 0.54
8 22 0.56 0.48 -0.76 0.22 0.50

The results shown in Table 6 indicate that the sigh the weights remain
constant but their values change in the transifimm the partial sample (15
observations) to the full one (22). The main change an increase in the weight of
the econometric model (by 0.24) and a decline @ dif the statistical one (by 0.1%).

We now test to see whether the changes in the wemhes, resulting from
change in sample size, are meaningful in termeddicing MSE. To accomplish this,
we observe the MSE obtained in a sample of twembtydbservations, in which the
weights were determined on the basis of a 15 ob#iervsample (Table 6, Line 1),
and compare it with weights determined on the baéia 22 observation sample
(Table 6, Line 8). The test yields an MSE of 0.0dtten the Line 1 weights are used
(fifteen observations—the smallest sample) as ag@i®13 when the Line 8 weights
(twenty-two observations—the largest sample) aedu3he difference is minimal,
especially relative to the MSE obtained via the o$ethe simple mean method
(0.043).

Finally, we test whether the results would be seslip affected if the sample
were extended. To do this, a sample of forty-twesesbations (February 2009-July
2012) for four models (omitting the BVAR model baesa it wasn't calculated
regularly during part of the period) is used. Obsgy the MSE in the forty-two-
observation sample using weights determined omalses of a twenty-six-observation
sample (small sampléj and comparing it with the use of weights determibg the
forty-two-observation sample (long sampl@MSEs of 0.046 and 0.042, respectively,
were found. This negligible difference shows ttegt tise of a long sample would not
seriously modify the effectiveness of the weigmsaducing MSE and that changes
in the weights over time are also inconsequemntighis respect®

% A similar check for a model free of restrictioms ¢oefficient sum and sign) finds that the sunthef
coefficients is not significantly different fromid samples of all sizes.

2 Once the unified model begins to be used on alaedsis, it will have at least twenty-six
observations.

% Recursive weights determined on the basis of sesrfivarying lengths are shown in Appendix 2.
% The MSEs obtained from the forty-two observatiample (excluding the BVAR model), mentioned
in this paragraph, exceeded those obtained fromwaety-two observation sample (including BVAR)
mentioned in the previous paragraph. This may le=tduthe omission of the BVAR model or to the
difference in sample lengths. When the MSE wasetksh the twenty-two observation sample
excluding the BVAR model, a value of 0.015 was fbuhherefore, the increase in MSE traces to the
change in sample length and not to the omissiaghe@BVAR model.
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4. Implementation of the unified model

Due to the sample size and the wish to maximizeigion, the weights will be
adjusted every month. That is, the optimal weigtitsbe calculated on the basis of a
sample that includes the previous month’s data.

In addition to update frequency, changes in theatsoshould be addressed. The
various CPI forecasting models are occasionallysesl/to improve their estimation
ability, meaning that the models which are weightealy change from time to time.
Practically speaking, such changes will be conedlem the basis of the following
decision-making rule: if the change is minor, thestng weighting will remain in use
and the change will be ignored, and if the charsgmeéaningful, the model will be
calculated as a new model and the forecastingheilrfedone retroactively with the
help of vintage data. Note that the rule will als® applied to each model in the
sample tested in this study.

5. Conclusion

The Research Department’s one-month ahead inflébicatast is currently based on
a simple mean of five models that predict CPI cleaimgthe coming month. This
study proposes differential weighting of the motfdsecasts and the assignment of a
negative weight to one of them. The study beganrdyewing the sources of
inspiration for this proposal; they relate to exgphy the potential in a positive
correlation among errors of the models, namely bsighting some of them
negatively. Further on, the study presented engliresults that support its central
proposition. The results show that when the exgstieighting method is replaced
with the new one, forecasting accuracy improvessiclanably (by around 50 percent
in MSE in out-of-sample tests). The results alsmalestrate that it is preferable to
include the negatively weighted model rather thesiugle it from the weighting.

The Research Department’s inflation forecast isimportant element in the
formulation of monetary policy, which aims to maim price stability. An
improvement in this indicator will supply policymets with more accurate forecasts
and improve their decision making.

The study also establishes grounds for the insligat the use of a negative
weight in the weighting of forecasts allows us xpleit positive correlations among
errors. This insight may be useful in weightingefcaists of other economic variables
and improving the Bank of Israel's forecasting iypih different contexts.
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7. Appendices

Appendix 1. CPI forecasting models

1. Statistical model—based on separate forecasts for each of the ten ma
components of the CPI (several components areativiisto subcomponents)
(Suhoy & Rotberger, 2006).

2. Econometric model—based on the Phillips curve approach and geneaates
forecast for the overall CPI by forecasting a “conglex—the CPI excluding
fruit and vegetables, clothing and footwear, engagyl housing (llek, 2006).

3. BVAR model—a VAR model estimate that applies a Bayesian ntetb@ set of
variables: the CPI excluding housing, the housmgmonent, inflation
expectations, exchange-rate changes, the Banka# isiterest rate, exports, and
private consumption.

4. Single equation model-an autoregressive equation for the price indexaand
separate equation for the housing component oClgSorezcky, 2009).

5. MIDAS model—based on data of differing frequencies; it allate inclusion of
financial data and global commodity prices withlyliequency by adjusting
distributions (Ribon & Suhoy, 2011).

Appendix 2. Recursive weights and an expanded sample omitting the BVAR model

Model / MIDAS Single- | Econometric | Statistical

Sample size equation
26 0.29 0.24 0.09 0.38
28 0.32 0.17 0.10 0.41
30 0.34 -0.02 0.11 0.58
32 0.39 -0.07 0.11 0.58
34 0.40 -0.08 0.11 0.57
36 0.38 -0.06 0.15 0.53
38 0.38 -0.07 0.15 0.54
40 0.36 -0.07 0.17 0.55
42 0.38 -0.12 0.26 0.48
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