The extensive and intensive margin of price adjustment to cost shocks: Evidence from Danish multiproduct firms

Luca Dedola (ECB & CEPR), Mark Kristoffersen (FH), Gabriel Zuellig (Oxford & SFI)

Inflation: Dynamics, Expectations and Targeting Bank of Israel & CEPR July 12-13, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Views and conclusions are our own and do not necessarily reflect those of the ECB or Danmarks Nationalbank

Micro Price Adjustment and Inflation Dynamics

- Does lumpy and heterogeneous price adjustment matter for inflation dynamics, monetary transmission?
 - Auclert, Rigato & Straub 2021: Generalized Phillips Curve = IRF of prices to marginal costs
- "Extensive" (prob. of price changes) and "intensive" margin (size of price changes):
 - How much time vs state dependence (TD & SD) in decision to change prices? Synchronization in multiproduct firms?
 - "Selection": How much interdependence between extensive & intensive margin?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Micro Price Adjustment and Inflation Dynamics

- Does lumpy and heterogeneous price adjustment matter for inflation dynamics, monetary transmission?
 - Auclert, Rigato & Straub 2021: Generalized Phillips Curve = IRF of prices to marginal costs
- "Extensive" (prob. of price changes) and "intensive" margin (size of price changes):
 - How much time vs state dependence (TD & SD) in decision to change prices? Synchronization in multiproduct firms?
 - "Selection": How much interdependence between extensive & intensive margin?
- Heterogeneity in intensive margin across shocks, sectors and firms ("real rigidities"):
 - Firm-specific vs more common shocks (Boivin et al. 2009)?
 - Supply chain/network effects (Rubbo 2020)?
 - Muted adjustment in larger firms (Amiti et al. 2019)?

What We Do and Main Results

Joint estimation of margins of micro price adjustment to cost shocks

Extensive margin:

- State dependence: Frequency affected by firm (cost), industry and aggregate shocks
- Only imperfect synchronization of price changes within firms

• Selection and intensive margin:

- Despite state-dependence, small selection effect ("bias")
- Price adjustment consistent with hybrid TD-SD models
- Heterogeneity across shocks, sectors and firms real rigidities matter for adjustment:
 - Delayed for energy costs/oil supply shocks, through sectoral "pipeline"
 - ▶ Faster but smaller (<< 1) for (more) idiosyncratic import cost
 - ► Smaller adjustment mainly due to larger firms

Selected Literature

- Theory & evidence on price setting in multiproduct firms: Alvarez & Lippi (2014), Bhattarai & Schoenle (2014), Bonomo et al. (2019)
- Carlsson & Skans (2012), Carlsson (2017): State dependence and pass-through of firm-level labor costs
- Karadi, Schoenle & Wursten (2020): Conditional probability of adjustment and selection
- Balleer et al. (2020): Response of frequency and size of price changes to monetary shocks
- Boivin et al. (2009), Smets et al. (2019): Macro price dynamics in response to aggregate and *sectoral* (idiosyncratic) shocks

Roadmap

- $1. \ \ {\rm Two-step \ empirical \ approach}$
- 2. Data description and implementation
- 3. Estimates of extensive and intensive margin

Lumpy Price Adjustment & State Dependence

- With sticky prices adjustment via extensive and intensive margins
 - ▶ Important to distinguish stickiness (how many $\Delta p = 0$) and pass-through into "reset" prices ($\Delta p \neq 0$)
 - Under SD, prices farther from desired value more likely to change

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lumpy Price Adjustment & State Dependence

- With sticky prices adjustment via extensive and intensive margins
 - ► Important to distinguish stickiness (how many $\Delta p = 0$) and pass-through into "reset" prices ($\Delta p \neq 0$)
 - Under SD, prices farther from desired value more likely to change
- What happens in response to cost shock δ ?
 - Selection: Prices receiving other (idiosyncratic) shocks of same sign as δ more likely to change
 - ▶ Selection effect: Average cross-section of actual $\Delta p \neq 0$ larger than $|\delta|$, the higher SD
 - Alvarez & Lippi 2014,20: Selection matters even when cost shock δ small, with minor effect on frequency Still adjustment shifts e.g. from large $\Delta p_{it} < 0$ to large $\Delta p_{it} > 0$

Price Adjustment Margins under SD and TD models

Costain & Nakov 2011

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへぐ

Dealing with Selection Bias due to Unobserved Shocks

- Not a problem if all shocks affecting prices are observable
- Otherwise, OLS regressions estimating pass-through with $\Delta p \neq 0$ may suffer from endogenous selection bias
- To wit: unobserved shocks affect decision to change prices and its size, resulting in omitted variable bias for all costs
- "Heckit" approach: Including correction for selection bias (to capture "spurious" correlation due to omitted variables)

Back-of-the-envelope Estimates of Margins Decomposition

► Caballero & Engel 07 decomposition of overall price change (p̂_{t+h} - p̂_{t-1+h}) conditional on cost shock (for each horizon h):

$$\widehat{p}_{t+h} - \widehat{p}_{t-1+h} = \underbrace{\overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right)}_{TD \ MARGIN} + \underbrace{\left[\left(\widehat{p}_{t+h} - \widehat{p}_{t-1+h} \right) - \overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right) \right]}_{SD \ MARGIN}$$

Back-of-the-envelope Estimates of Margins Decomposition

► Caballero & Engel 07 decomposition of overall price change (p̂_{t+h} - p̂_{t-1+h}) conditional on cost shock (for each horizon h):

$$\widehat{p}_{t+h} - \widehat{p}_{t-1+h} = \underbrace{\overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right)}_{TD \ MARGIN} + \underbrace{\left[\left(\widehat{p}_{t+h} - \widehat{p}_{t-1+h} \right) - \overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right) \right]}_{SD \ MARGIN}$$

- ► TD margin =: Estimates of selection-corrected "reset prices" $(\hat{p}_{t+h}^* - \hat{p}_{t-1+h}^*)$, times *unconditional* freq. of price changes $(\overline{\lambda}_h)$

Back-of-the-envelope Estimates of Margins Decomposition

► Caballero & Engel 07 decomposition of overall price change (p̂_{t+h} - p̂_{t-1+h}) conditional on cost shock (for each horizon h):

$$\widehat{p}_{t+h} - \widehat{p}_{t-1+h} = \underbrace{\overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^*\right)}_{TD \ MARGIN} + \underbrace{\left[\left(\widehat{p}_{t+h} - \widehat{p}_{t-1+h}\right) - \overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^*\right)\right]}_{SD \ MARGIN}$$

- ▶ TD margin =: Estimates of selection-corrected "reset prices" $(\hat{p}_{t+h}^* \hat{p}_{t-1+h}^*)$, times *unconditional* freq. of price changes $(\overline{\lambda}_h)$
- ► SD margin =: $(\hat{p}_{t+h} \hat{p}_{t-1+h}) \overline{\lambda}_h (\hat{p}_{t+h}^* \hat{p}_{t-1+h}^*)$ further decompose in selection proper, change in freq. $\Delta \lambda_{t,h}$

- Two-step estimation correcting (and testing) for selection, drawing on Bourguignon et al. 2007
- First step: Estimate probability of changing prices as multinomial logit over Δp > 0,Δp < 0, Δp = 0</p>
- Second step: Estimate price adjustment in "reset" prices $\Delta p \neq 0$, with 1st step "bias correction"

• Polycothomous selection model over horizons h = 0, ..., H:

$$\begin{aligned} r_{ij,m,t+h}^* &= \gamma_m^h Z_{ij,t} + \eta_{ij,m,t+h}, \qquad m = -1, 0, 1\\ p_{ij,t+h} - p_{ij,t-1+h} &= \beta^h X_{ijt} + u_{ijt+h}, \qquad m \neq 0\\ E\left(u_j \mid \eta, \gamma Z\right) &\neq 0 \text{ (selection bias)} \end{aligned}$$

▶ Polycothomous selection model over horizons *h* = 0, ..., *H* :

$$\begin{aligned} r_{ij,m,t+h}^* &= \gamma_m^h Z_{ij,t} + \eta_{ij,m,t+h}, \qquad m = -1, 0, 1\\ p_{ij,t+h} - p_{ij,t-1+h} &= \beta^h X_{ijt} + u_{ijt+h}, \qquad m \neq 0\\ E\left(u_j \mid \eta, \gamma Z\right) &\neq 0 \text{ (selection bias)} \end{aligned}$$

▶ *r*^{*} is (latent) firm's "return" over categorical variable *m* :

$$m = \begin{cases} -1 \text{ if } p_{ij,t+h} - p_{ij,t-1+h} < 0\\ 1 \text{ if } p_{ij,t+h} - p_{ij,t-1+h} > 0\\ 0 \text{ otherwise} \end{cases};$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polycothomous selection model over horizons h = 0, ..., H :

$$\begin{aligned} r_{ij,m,t+h}^* &= \gamma_m^h Z_{ij,t} + \eta_{ij,m,t+h}, \qquad m = -1, 0, 1\\ p_{ij,t+h} - p_{ij,t-1+h} &= \beta^h X_{ijt} + u_{ijt+h}, \qquad m \neq 0\\ E\left(u_j \mid \eta, \gamma Z\right) &\neq 0 \text{ (selection bias)} \end{aligned}$$

r* is (latent) firm's "return" over categorical variable m :

$$m = \begin{cases} -1 \text{ if } p_{ij,t+h} - p_{ij,t-1+h} < 0\\ 1 \text{ if } p_{ij,t+h} - p_{ij,t-1+h} > 0\\ 0 \text{ otherwise} \end{cases};$$

• E.g., choose to increase prices if $r_1^* > \max(r_m^*)$

First Step: Extensive Margin

 Positing η (cross-sectionally) ~iid Gumbel yields multinomial logit for each horizon h (e.g. McFadden 1973):

$$\Pr\left(m_{ij,t+h}=1,0,-1|Z_{ijt}\right) = \Phi\left(\gamma_m^h Z_{ijt}\right) = \frac{e^{\gamma_m^h Z_{ijt}}}{1 + \sum_m e^{\gamma_m^h Z_{ijt}}}$$

- Flexible non-linear specification: coefficients γ^h_m (and β^h) are specific across outcomes m and horizons h
 - Explanatory variables Z_{ij,t} can have asymmetric effects at any horizon h on the probability of price hikes or cuts

Outcomes m not ordered but their probabilities "add up"

First Step: Extensive Margin

 Positing η (cross-sectionally) ~iid Gumbel yields multinomial logit for each horizon h (e.g. McFadden 1973):

$$\Pr\left(m_{ij,t+h}=1,0,-1|Z_{ijt}\right) = \Phi\left(\gamma_m^h Z_{ijt}\right) = \frac{e^{\gamma_m^h Z_{ijt}}}{1 + \sum_m e^{\gamma_m^h Z_{ijt}}}$$

- Flexible non-linear specification: coefficients γ^h_m (and β^h) are specific across outcomes m and horizons h
 - Explanatory variables Z_{ij,t} can have asymmetric effects at any horizon h on the probability of price hikes or cuts
 - Outcomes m not ordered but their probabilities "add up"
- Alternatively, assume η ~ multivariate normal to get multinomial probit (computationally more challenging)

Second Step: Intensive Margin & Selection Correction

- Under state-dependence 2nd step error "u" not independent of η_m ("spurious" correlation due to selection)
- Dubin-McFadden '84 extension of Heckman '79: Conditional expectations linear function of know convolutions of η_m

$$E\left(u_{j} \mid \eta, \gamma Z\right) = \mu\left(P_{-1}, P_{0}, P_{1}\right)$$

$$\underbrace{p_{ij,t+h} - p_{ij,t-1} = \beta^h X_{ijt} + }_{\substack{\lambda_m^k \neq m^*}} \underbrace{\lambda_m^h \left(\mu(\Pr_{h,m}) \frac{\Pr_{h,m}}{(\Pr_{h,m}-1)} \right)}_{\text{selection bias correction}} + w_{ij,t+h}, m^* \neq 0$$

where $\mu\left(\cdot\right)$ numerical integrals over individual observation probabilities from 1st step logit

Second Step: Intensive Margin & Selection Correction

- Under state-dependence 2nd step error "u" not independent of η_m ("spurious" correlation due to selection)
- Dubin-McFadden '84 extension of Heckman '79: Conditional expectations linear function of know convolutions of η_m

$$E\left(u_{j}|\eta,\gamma Z\right)=\mu\left(P_{-1},P_{0},P_{1}\right)$$

$$\underbrace{\lambda_{m^*}^h \mu(\mathsf{Pr}_{h,m^*}) + \sum_{\substack{m \neq m^* \\ m \neq m^*}} \lambda_m^h \left(\mu(\mathsf{Pr}_{h,m}) \frac{\mathsf{Pr}_{h,m}}{(\mathsf{Pr}_{h,m}-1)} \right)}_{\text{selection bias correction}} + w_{ij,t+h}, m^* \neq 0$$

where $\mu\left(\cdot\right)$ numerical integrals over individual observation probabilities from 1st step logit

► Test of selection bias: coefficients λ^h_m ≠ 0; economic size of bias comparing estimates with/w-o correction term

Roadmap

- 1. Two-step empirical approach
- 2. Data description and implementation
- 3. Results on extensive and intensive margin

(ロ)、(型)、(E)、(E)、 E) の(の)

Data: Prices and Firms

- Monthly goods prices for Danish PPI covering 70+% total sales of industrial production, 1993-2017
- 3500 monthly prices for domestic and export transactions

- 2900 monthly imported input prices
- From 1140 firms (representative sample for prices)
- Median duration of price reporting: 115 months
- Merge with firm-level cost data:

Data: Prices and Firms

- Monthly goods prices for Danish PPI covering 70+% total sales of industrial production, 1993-2017
- 3500 monthly prices for domestic and export transactions
- 2900 monthly imported input prices
- From 1140 firms (representative sample for prices)
- Median duration of price reporting: 115 months
- Merge with firm-level cost data:
 - Accounting data: Annual cost shares, 1994-2016
 - VAT filings: Monthly/quarterly sales & input purchases, 2001-2017
 - Labor costs: Monthly wage bill and hours worked, 2008-2017

Frequency of (Cumulated) Price Changes << 1

Probabilities of cumulative price changes

Months

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Distribution of Price Changes Has High Kurtosis

Standardized log difference m/m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two cost shocks

1st order approximation to marginal costs (Amiti et al. 2019):

•
$$\phi_{i,t-1}^{E} \Delta p_{t}^{E}$$
: Energy cost shock (*std* = 0.3%)

- Firm share of energy in total cost from balance sheet data (mean 1.8%)
- Interacted with Baumeister-Hamilton (2019) structural oil supply shock (scaled with elasticity of Danish energy price)

Two cost shocks

1st order approximation to marginal costs (Amiti et al. 2019):

• $\phi_{j,t-1}^{E} \Delta p_{t}^{E}$: Energy cost shock (*std* = 0.3%)

- Firm share of energy in total cost from balance sheet data (mean 1.8%)
- Interacted with Baumeister-Hamilton (2019) structural oil supply shock (scaled with elasticity of Danish energy price)
- $\phi_{j,t-1}^{M} \Delta p_{j,t}^{M}$: Import cost shock (*std* = 1.1%)
 - Firm share of imports in total cost from VAT filings (mean 26%)

Two cost shocks

1st order approximation to marginal costs (Amiti et al. 2019):

• $\phi_{i,t-1}^{E} \Delta p_t^{E}$: Energy cost shock (*std* = 0.3%)

- Firm share of energy in total cost from balance sheet data (mean 1.8%)
- Interacted with Baumeister-Hamilton (2019) structural oil supply shock (scaled with elasticity of Danish energy price)
- $\phi_{j,t-1}^{M} \Delta p_{j,t}^{M}$: Import cost shock (*std* = 1.1%)
 - ► Firm share of imports in total cost from VAT filings (mean 26%)
 - Interacted with mean of within-firm import prices from same PPI survey — identification by controlling for other firm costs, variables

Covariates in 1st and 2nd step

- Time-varying controls (plus firm size, #products, monthly and sector dummies):
 - Three-month changes in sales and intermediates purchases
 - Change in hourly wage interacted with firm labor share
 - ► Product-level mean of competitors' prices $\Delta \overline{p}_{-i,jt}$ (Amiti et al. 2019)
 - Aggregate controls: $\Delta CPI \ (\Delta PPI), \ \Delta NEER$
- Included only in logit (1st step) to enhance 2nd step estimation (usually not included in pass-through regressions):
 - Age of price
 - Within-firm volatility of price changes over past 5 years
 - Price Synchronization: Share of *positive & negative* price changes within (multiproduct) firms, and among competitors

Roadmap

- 1. Two-step empirical approach
- 2. Data description and implementation
- 3. Results on extensive and intensive margin

1st Step: Imperfect Synchronization

(a) within firm

Months

Within-firm sync. (weakly) rises with #products

(b) across firms within industry

Months

1st Step: Some State Dependence...

No strong non-linearity even when two shocks combined

(b) Import cost shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Import and Energy Cost Shocks

Both shocks persistent at firm-level, but φ^E_{jt−1+h}Δp^E_{t+h} more pervasive effects than φ^M_{jt−1+h}Δp^M_{jt+h}

(a) Shock

⁽b) Total variable cost

Intensive Margin and Selection (2nd Step)

Price dynamics in response to 1% cost shocks

Months

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Selection Correction Statistically Significant

But quantitatively small, robust to using multinomial probit

8	ΔP^O	ΔP^M	$\Delta \bar{P}_{-j}$		Selection		N	R2
				Decrease	Unchanged	Increase		
k=0	0.0569	0.2826***	0.1740***	-0.1007^{***}	0.0000	0.0738***	54,653	0.431
k=1	0.0671	0.3422^{***}	0.2566***	-0.1060^{***}	-0.0004	0.0983^{***}	76,149	0.436
k=2	0.1457^{*}	0.564^{***}	0.2609***	-0.1054^{***}	0.0001^{***}	0.1191^{***}	93,309	0.458
k=3	0.1837^{*}	0.4077^{***}	0.2796***	-0.1069^{***}	0.0015	0.1328^{***}	103,888	0.466
k=4	0.2953^{**}	0.4084^{***}	0.2596***	-0.1147^{***}	0.0027	0.1384^{***}	$113,\!057$	0.475
k=5	0.2550^{*}	0.3890^{***}	0.2464^{***}	-0.1191^{***}	0.0042^{*}	0.1425^{***}	121,267	0.479
k=6	0.3240**	0.3806***	0.2418***	-0.1198^{***}	0.0080**	0.1492^{***}	127,366	0.483
k=9	0.4989^{***}	0.3670^{***}	0.2180***	-0.1387^{***}	0.0159^{***}	0.1465^{***}	141,721	0.489
k = 12	0.6216^{***}	0.3444^{***}	0.2255***	-0.1629^{***}	0.0241^{**}	0.1353^{***}	$149,\!625$	0.488
k=15	0.8219^{***}	0.2218^{***}	0.2016***	-0.1909^{***}	0.0234^{*}	0.1251^{***}	151, 142	0.489
k=18	0.8507^{***}	0.2170^{***}	0.1869***	-0.2089^{***}	0.0220	0.1199^{***}	150,493	0.490
k=21	0.8656^{***}	0.2112^{***}	0.1475***	-0.2247^{***}	0.0274	0.1145^{***}	148,591	0.491
k=24	0.7435^{***}	0.2109^{***}	0.1604^{**}	-0.2505^{***}	0.0293	0.1034^{***}	145,715	0.494

Recall Back-of-the-envelope Decomposition of Margins

► Decompose estimated price adjustment (p̂_{t+h} - p̂_{t-1+h}) conditional on cost shock for each horizon h:

$$\widehat{p}_{t+h} - \widehat{p}_{t-1+h} = \underbrace{\overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right)}_{TD \ MARGIN} + \underbrace{\left[\left(\widehat{p}_{t+h} - \widehat{p}_{t-1+h} \right) - \overline{\lambda}_h \left(\widehat{p}_{t+h}^* - \widehat{p}_{t-1+h}^* \right) \right]}_{SD. \ MARGIN}$$

where $\hat{p}_{t+h} - \hat{p}_{t-1+h} =:$ OLS estimates including zero/non-zero $p_{t+h} - p_{t-1+h}$

 Recall SD margin includes contributions from both selection and extensive margin

Decomposition: Bulk of Adjustment due to TD Margin

(a) Energy cost shock

(b) Import cost shock

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Several Robustness Checks

- Pass-through at firm- instead of product-level (measurement bias)
- Drop exiting products, export prices
- Selection correction with Multinomial Probit (correlated errors in 1st step, no IIA)

- Drop firm-level observable costs
- Sign of shocks

Heterogeneity across Shocks, Sectors, Firms

Heterogeneous adjustment across two shocks mainly due to response of reset prices, lower than implied Calvo adjustment:

Energy Shock

Import Shock

э

Heterogeneity across Shocks, Sectors, Firms

- Heterogeneous adjustment across two shocks mainly due to response of reset prices
- Explore sources of real rigidities:
 - Import shocks largely idiosyncratic, more common component in oil shocks

- Supply chain/network and "pipeline" effects for oil shocks
- Larger firms react less to import shock

Heterogeneous Shock Adjustment: Controlling for Competitors' Prices in t+h

Similar results with time fixed effects

(a) Oil price shock

(b) Import cost shock

(日)、

э

Heterogeneous Adjustment: Pipeline Effects of Oil Shock

(b) Final goods

ロト (四) (主) (主) (主) のへで

Heterogeneous Adjustment: Larger Firms React less to Import Shock

(a) < 100 employees

(b) ≥ 100 employees

(日)、

э.

Conclusions

Evidence on price adjustment in multiproduct firms in line with (hybrid) SD models with little selection, strong real rigidities

- Synchronization and state-dependence:
 - Price change probability increasing with fraction of other prices changing, the stronger the more products
 - Probability depends on (firm, industry and aggregate) shocks
- Intensive margin and shock, sector and firm heterogeneity
 - Small selection "bias", evidence of real rigidities
 - Gradual adjustment to aggregate energy/oil shocks due to "pipeline", second round effects
 - Adjustment to more idiosyncratic import costs fast but smaller for larger firms
- Future research:
 - Does SD matter for large shocks?
 - How do strategic complementarities interact with nominal rigidities?