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Interest Rate in the Objective Function of the Central Bank and
Monetary Policy Design

Guy Segal

Abstract

We analyze two well-known specifications of the interest rate term in the central
bank's objective function, and find that the inflation response to a positive demand
shock is positive (intuitive) under one specification and negative (counter-intuitive)
under the other. We show that the difference between the two responses can be
mitigated by a Taylor-type rule and depends on the interest rate inertia. A super-
inertial interest rate, which is more aggressive and leads to the counter-intuitive
response, may be helpful in an environment of low inflation due to negative demand

shocks, such as the current global economic environment.

JEL classification: E58, E61
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1. Introduction
This paper focuses on the implications of modeling an optimal rule/targeting rule, that
is, the rule that minimizes the objective (loss) function of the central bank subject to
the economy's model. The basic objective function includes the squared deviations of
inflation and output gap from their targets.'! However, in light of the observed
tendency of policymakers to smooth interest rates, the commonly used objective
function also includes an interest rate term. Some explanations for interest rate
smoothing include the central bank's tradeoff between its concern for stability of the
financial system and for price stability (Cukierman 1996)°; interest rate smoothing in
forward-looking models as an anchor for expectations results in lower volatilities of
inflation and output (gap) as well as of the interest rate (Levin, et al., 1999, Woodford,
1999, 2001); and also reflects uncertainty regarding data due to revisions (Orphanides
1998). A gradual response may also be in order given uncertainty regarding the
parameters of the economy (Sack 2000), the striving for consensus about interest rate
decisions (Sack and Wieland 2000), or avoiding the (zero) lower bound (Woodford
2002).

This paper compares and analyzes the implications of each of the two most well-
known specifications of the interest rate term in the objective function of the central
bank (hereinafter, CB)—i.e., adding squared terms to either the interest rate
(hereinafter, OFI) or to its first difference (hereinafter, OFII)—on optimal monetary
policy within the timeless perspective framework (Woodford 2003a).

Woodford (2003a) showed that in the presence of a zero interest rate lower bound,
or in the presence of non-negligible transaction frictions, the microfounded basic
objective function should be augmented with a squared interest rate term (OFI). While
Woodford's result does not directly reflect considerations of interest rate smoothing, it
does yield a degree of such smoothing. Many central bankers as well as academics
used Woodford's derived objective function to address optimal monetary policy

issues, such as Billi (2012), Giannoni (2012) and Kam (2003), among numerous

! Rotemberg and Woodford (1999) derive the basic objective function analytically within the New
Keynesian model using a second-order Taylor approximation of the representative household's utility
function.

* Cukierman (1996) describes the following mechanism: Given the asymmetry between the long term
loan contracts the banks give, most of which are fixed rate, and the short term deposits, banks’ profits
are negatively related to the short term interest rate. Hence, in order to strengthen the stability of the
financial system, the interest rate should be decreased, which in turn leads to inflationary pressures, and
vice versa. This tradeoff between price stability and stability of the financial system supports interest
rate smoothing.



others. In contrast, other authors—e.g., Adolfson et al. (2011), Dennis (2005), Givens
(2012) as well as Woodford (2000)—have augmented the basic objective function in
an ad hoc manner with a squared first difference of the interest rate (OFII). The
Norges Bank uses a combination of both squared first difference of the interest rate
and squared interest rate in its loss function (Evjen and Kloster 2012).

We show that the optimal policy rule for OFII derived in the paper—that includes
the first difference of the interest rate—embodies a less inertial response of the
interest rate to its first lag and a more smoothed path, in comparison to its counterpart
in OFI, derived by Giannoni (2012). The main difference between the two OFs is in
the inflation response to a positive demand shock: it is negative under OFI and
positive under OFII. This difference may explain in part why OFIIL, though not
theoretically based as OFI, is more frequently used in the structural models used by
central banks.

Following Giannoni (2012), we show that under OFI, the optimal interest rate may
be represented by an augmented Taylor rule with two lagged interest rates, in which
the sum of the coefficients of the lagged interest rate is greater than one—previously
denoted as “super-inertial” (Giannoni (2012) and Rotemberg and Woodford (1999)).
While Giannoni (2012) concentrates on OFI, we show that under OFII, the optimal
interest rate may be represented by a rule with three lags of the interest rate and one
lead, beyond a response to inflation and output gap. However, in this case, the sum of
the coefficients of the interest rates is one.

Based on this analysis and assuming an augmented Taylor rule with two lags of
the interest rate, using simulations we show that if the sum of the coefficients of the
lagged interest rate is greater than one, the inflation converges to steady state from
below zero after a positive demand shock, as in OFI. For a sum of coefficients which
is less than one, the inflation converges to steady state from above, as in OFII—the
standard response. Hence, reversing the impulse response's signs when the sum is
greater than one implies that such calibration is helpful in an environment of low
inflation due to megative demand shocks, such as the current global economic
environment—the main contribution of the paper.

This inflation response stems from the “super-inertial” characteristic of the rule,
which, we argue, is the opposite of inertial; when the sum of coefficients of the lagged
interest rate approaches one from below, it does lead to a smoother interest rate

response. However, when the sum is greater than one, it leads to a more aggressive
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response and less inertia in the interest rate. This aggressiveness leads to a higher real
ex-ante interest rate, which lowers both output gap and inflation to below zero, and
hence, as noted by Woodford (2003 b) and Giannoni (2012), does not explode.
Moreover, the expected higher real ex-ante interest rate offsets the aggressiveness,
and hence the observed difference between the interest rate responses, when the sum
of the coefficients is either above one or below one, is minor.

The rest of the paper is organized as follows. Section 2 presents the two objective
functions with respect to the interest rate. Section 3 shows the optimal policy rule
under OFI, and Section 4 derives the optimal policy rule under OFIIL. Section 5
analyzes and compares the two specifications, Section 6 presents sensitivity analysis,
Section 7 proposes an augmented Taylor rule which can be designed to lead to either
a positive or a negative inflation response to a positive demand shock, and Section 8

concludes.

2. The Objective Function of the Central Bank

2.1. Objective Function I — squared interest rate term

First, we consider the objective function:
E{L¢} = 0.5E, X520 B [mf + Axxf + Aif], (1)

where 7, is the inflation rate, x, is the output gap, and i, is the nominal interest rate.
The operator E, denotes the mathematical expectation as of time 7. The first two
terms reflect the standard flexible inflation targeting regime. The main goal of this
regime is to achieve price stability, captured by the first term, and to stabilize output
fluctuations, represented by the squared output gap in the second term. 4 _is the weight
of the output gap relative to inflation.

As for the third term, Woodford (2003) showed that the squared interest rate
enters the objective function of the central bank (the third term) in the presence of a
zero interest rate lower bound (p. 428) or in the presence of non-negligible transaction

frictions (p. 476). A is the weight of the interest rate relative to inflation.” While this

?* Woodford (2003, Ch. 6) shows that A; is a function of A,,—the interest rate semielasticity of money
demand and the velocity of money, among other variables, in the case of transaction frictions—or that
it is greater when accounting for the zero interest rate lower bound.
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objective function is not derived from an interest rate smoothing objective, it does
imply a degree of such smoothing.

Figure 1 depicts monetary interest rates of selected central banks during the
January 1990-December 2016 period. The figure shows the observed tendency of
central banks to smooth interest rates: an interest rate change is in general followed by

further changes in the same direction.

Central Banks’ Interest Rates
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Fig. 1. Central Banks’ Interest Rates, 1990-2016.
Source: Bloomberg.

2.2. Objective Function Il — squared first difference of the interest rate

The objective function of the central bank in this case is:
Ee{Lc} = 0.5 XiZo B' [M7 + Axx? + Ani(Air)f]. 2)

The third term in this objective function, Ai, = i, — i;_4, is an ad hoc supplement,
which is designed to yield interest rate smoothing.

We address the implications of using each of the above two specifications of the
objective function on the economy by computing the timeless perspective optimal

policies within the canonical New Keynesian (NK) model:

72-/ :ﬁEI {7[l+l}+’(xl’ (3)
X, :E,{x,ﬂ}—a(i, _Et{ﬂ-wl})"i_g/' (4)
Equation (3) describes the inflation dynamics known as the New Keynesian Phillips

curve (NKPC). The dynamic IS equation (4) describes the output gap dynamics. The

disturbance term g, denotes white-noise demand shock, and may reflect preference



shocks or shocks to the natural interest rate.* Specifically, we use Woodford's (2003)

specification for the structural parameters x and 4,:

k=(1-60)(1-p0)(w+c H/[0(1+we)], (5)
Ay = K/e. (6)

6 is the Calvo parameter; (1- 6 ) is the probability of a firm resetting its prices. w is
the elasticity of real marginal cost with respect to production (Woodford (2003) p.
148-152). o is the intertemporal elasticity of substitution in consumption, and ¢ is the
elasticity of substitution among goods. In the baseline calibration (Appendix C) we

set the ratio of 4;/4, following Woodford (2003).

3. The Optimal Interest Rate Rule under the OFI specification
Under OFI, Giannoni (2012) derives the optimal interest rate (Appendix A):

ip = (o /A)me + (A /A)Ax, + (L + oK /B)ip—y + ﬁ_lAit—l . (7)

The main difference between this policy rule and the rule which is derived from the
basic objective function without an interest rate term (Appendix A.1) is that here the
interest rate responds to the change in the output gap and to the first and second
lagged interest rates. Another main difference is that in the basic objective function,
policy sterilizes the demand shock, as there is no tradeoff between stabilizing inflation
and the output gap and stabilizing the interest rate. Giannoni notes that the optimal
rule in Equation (7) implies a “super-inertial” response of the interest rate, reflected
in the sum of coefficients of the lagged interest rate 1+ okx/B (Woodford 2003,
Giannoni 2007 & 2012). This “super-inertial” response is a desirable character of
monetary policy in models with forward-looking agents when the objective function
also includes the interest rate, as it anchors expectations, and by doing so makes it
possible to achieve lower fluctuations of inflation and output gaps with minor policy
(interest rate) actions (Rotemberg and Woodford, 1999, and Woodford 2003b).
Amato and Laubach (2003) show that super-inertial policy remains optimal in a new

Keynesian model with inflation expectations and habit formation. However, as we

* Cost-push shocks, i.e., shocks to the Phillips curve, affect the economy in a similar way under the
tested objective functions in this paper, and hence we focus on the demand shocks.
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show below, the “super-inertial” characteristic is less inertial than in a case when the

coefficient of the lagged interest rate is less than one.

4. Derivation of the interest rate rule under the OFII specification

The first-order condition with respect to the interest rate under the OFII specification,

Equation (2), is given by:

OW, | di, = A Ai, - BALE {AI, } v o, =0 Vi, (8)

t+1

while the rest of the first-order conditions are the same as under OFI (Appendix A).
The first-order conditions together with the behavioral equations now yield the

interest rate rule (Appendix B):

i, =[(ox) (A, )]z, + [(6A,) (A, Q)]Ax, + (B/Q)E (i, }+(1- L/ Q)i

. R ©)
+[(Q=DALY]AL, = (PQ) " Ai,,

where Q=0 +2(1+ B).

Note that in the optimal interest rate rule under OFII, the sum of the coefficients
of the interest rate terms is one, while in the optimal interest rate rule under OFI—
Equation (7)—it is above one, 1 + ok /f. The trade-offs among the target variables
are reflected in both optimal interest rate rules. A higher weight for the interest rate
term in the objective function yields a lower response to inflation and to the output
gap; a higher weight for the output gap increases the response to the output gap. In
contrast to OFI, in OFII the interest rate takes into account the next-period expectation

of the interest rate as well, and it also responds to the third lag of it.’

S. Analysis
Due to the expected interest rate term in Equation (9) we cannot compare the two
optimal rules directly. One possibility is to compare the minimum state variables

(MSV) solution of the two OFs models. However, finding a parametric closed-form

> Of course, the expectation term on the next-period interest rate implies that the infinite stream of
expected interest rates enter in Equation (9).



solution is not feasible.® Hence, in order to compare the two specifications we assume
that the weights of the interest rate terms in both specifications of the objective
functions are the same (4; = 4,;) and we analyze the impulse response functions
(IRFs) of each specification. Specifically, we use the baseline calibration following
Woodford (2003) (Appendix C). In Section 6 we show sensitivity analysis with
respect to the weights of the interest rate in OFI and OFII. A further analysis is based
on a decomposition of each of the IRFs to its structural components, as they appear in
the model equations: The inflation rate is decomposed according to the NKPC; the
output gap is decomposed according to the dynamic IS equation; and the interest rate
is decomposed according to its derived optimal instrument rule, which follows from
the first-order conditions of the central bank's optimization problem. The latter
decomposition provides additional insights.

Figure 2 presents the IRFs relating to a one positive standard deviation of a white-
noise demand shock: in the basic canonical model (without an interest rate term in the

objective function) and in the two specifications of the objective function tested here.
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Fig. 2. Impulse response function relating to a positive one standard deviation white-noise demand
shock under three OFs: Objective Function I (solid line); Objective Function II (dashed line); and the
Basic canonical Objective Function (diamond line).

% In deriving the solution of optimal policy, a necessary step is to reorder the Schur decomposition
(Soderlind 1999). This step requires numerical values of the eigenvalues and cannot be done based on
parameters only.



5.1. The basic canonical objective function

As noted by Giannoni (2012), in the basic objective function (without an interest rate
term, Appendix A.1) the demand shock is fully sterilized by the interest rate (Figure
2, stared line) and hence both inflation (top left) and output gap (top center) remain

unchanged.

5.2. Objective function 1

In contrast to the basic objective function, in OFI the demand shock seeps into the
output gap and inflation. This stems from the interest rate term in the objective
function, which causes a tradeoff between stabilizing inflation and the output gap and
stabilizing the interest rate. The main counter-intuitive response is the negative
inflation after the positive demand shock.’

Following a white-noise® positive demand shock the interest rate is raised in order
to offset the shock (Figure 2, solid line). However, the interest rate term in the
objective function prevents full sterilization of the shock, leading to a more
accommodating monetary policy than in the basic objective function (Figure 2, top
right), as reflected by the lower ex-ante real interest rate (i, — E{m;,1}) (bottom left)
in the first period, leading to an increase in the output gap.

Figure 3 depicts the relative monetary policy stance in OFI compared to the basic
case, computed by the gap between the real ex-ante interest rate in the two
specifications. When the real interest rate in OFI is higher than in the basic case,
monetary policy under OFI is relatively contracting, as reflected by a negative value
in Figure 3, and vice versa. From the second period onward, the output gap in OFI
turns negative and converges to steady state from below. That is, the negative output
gap is explained by the relatively contracting monetary policy under OFI compared to
the basic objective function.

At this point we should explain why the interest rate in the second period in OFI
does not return to steady state despite a “fine” in the objective function to such a
deviation. Recall the super-inertial characteristic of the OFI policy (Section 3). When
the demand shock hits the economy, the interest rate is lower under OFI than in the
basic model due to the interest rate term in the objective function. However, from the

second period onward the interest rate responds in a super-inertial—that is,

7 Giannoni (2012, F igure 2) shows a similar result with a minor positive inflation in the first period.
¥ The IRFs under an AR(1) process of the demand shock portray a similar picture.
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aggressive—way to the lagged interest rate, which was raised to offset the

expansionary output gap in the first period. This response is absent in the basic model.

Ex-ante Real Interest Rate Monetary Policy Stance
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Fig. 3. Impulse response function of real ex-ante interest rate (top panel) relating to a positive one
standard deviation white-noise demand shock under three OFs: Objective Function I (solid line);
Objective Function II (dashed line); and the Basic Objective Function (diamond line). The monetary
policy stance (right panel) is reflected by the gap between the real ex-ante interest rate under each of
the two tested objective functions and the real ex-ante interest rate under the basic objective function.

Figure 4 presents the decomposition of the IRFs of inflation, output gap and interest
rate according to the Phillips curve, the dynamic IS equation and the interest rate rule,
respectively. The inflation IRF decomposition (Figure 4, top right) shows that the
positive output gap in the first period is more than offset by the expected negative
inflation due to the negative output gap from the second period onward (Figure 4,

bottom), as was explained above.
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Fig. 4. Structural decomposition of OFI demand shock IRFs. Each IRF is decomposed into the
structural components, as they appear in the model equations: the interest rate IRF is decomposed
according to its derived instrument rule (top left); the inflation IRF is decomposed according to the
NKPC (top right); and the output gap IRF is decomposed according to the dynamic IS equation

(bottom).
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To see this, iterating the NKPC Equation (3) forward and using the law of iterated

expectations, we get:
my = Ey Z?:oﬁj [rexes 5] (10)

Iterating (10) one period ahead and taking expectations, we get that the one period

ahead expected inflation is a function of the future path of the expected output gap:

Ef{mia} = KE; Z;io B’ [Xr1+5]- (11)

5.3. Objective function 11

As in OFI, in OFII the demand shock also seeps into the output gap and inflation.
However, the first difference interest rate term in OFII yields, as expected, a smoother
interest rate path in comparison to OFI, as shown in Figure 2. The results from the
OFII specification are both positive output gaps and inflation rates after a positive
demand shock, in contrast with the negative response of the inflation rate in OFL. An
exception is the output gap in the second period, for which both specifications yield
negative effects.

The interest rate first-difference term in OFII reflects a “fine” on interest rate
changes rather than on interest rate /evels under OFIL. Hence, OFII yields a smother
path of the interest rate in comparison to OFI and to the basic case. The smoothed
path of interest rates implies an expansionary monetary policy (excluding the second
period) as reflected in the negative gaps between the real interest rate (ex-ante) in
OFII and its counterparts in OFI and in the basic case (Figure 3). As monetary policy
is relatively expanding, the output gap is positive in all periods (but the second), and
hence inflation is also positive, as explained above. This transmission mechanism
from the interest rate to the output gap and inflation is also shown in Figure 5, which
presents the decomposition of the IRFs under OFII. The relatively expansionary
policy in OFII leads to positive expected output gap (excluding the second period,

Figure 5, bottom) and in turn to positive expected inflation (Figure 5, top right).

11
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Fig. 5. Structural decomposition of OFIl demand shock IRFs. Each IRF is decomposed into the
structural components, as they appear in the model equations: the interest rate IRF is decomposed
according to its derived instrument rule (top left); the inflation IRF is decomposed according to the
NKPC (top right); the output gap IRF is decomposed according to the dynamic IS equation (bottom).

Table 1 summarizes the variances of inflation, output gap and interest rate under each
of the three objective functions in the presence of demand shocks, assuming the same
coefficient of the interest rate term in OFI and OFIIL. The variance of the interest rate

in OFII is lower than in OFI, and the latter is lower than in the basic case.

Table 1

Variances of target variables among different specifications of the objective function,’
Ai == AAi == 0 236

Var(inflation)  Var(output gap) Var(interest rate)
2 _ (07,12
Canonical: L, = 7[z2 +ﬂ,xxt2 0 0 0.0859° = (¢9/0)
2 0.0040° 0.0765 0.0669
OFL L =7 +Ax +Ai ! o
2 2 2
OFIL: L, = 7[;2 + ﬂxxtz + ﬂm (Ait)z 0.0203 0.1895 0.0632

As may be expected, a lower volatility of the interest rate reflects a more restricted
ability of monetary policy to offset the demand shocks. Hence, the variances of the

output gap and inflation are higher under OFII than under OFI. Under OFII, the

? The variances were computed using 100,000 Monte-Carlo simulations of each specification.
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standard deviation of inflation is five times higher, and the standard deviation of the

output gap is 2.5 times higher.

6. Sensitivity Analysis

We showed that under a benchmark calibration of the Basic New Keynesian model,

for the same weights in OFI and OFII, under OFI, (l',2 ), the response to a positive

demand shock leads to a negative inflation rate and output gap (excluding the output

gap in the first period) which converge to the steady state from below. In contrast,
under OFII, (Ai,)’, inflation and output gap are positive and converge to steady state

from above. We also showed that the variance of the interest rate in OFII is lower
than in OFI, while the variances of the output gap and inflation are higher.

In this section we test whether these results are robust to a range of structural
parameters. Specifically, we conduct a sensitivity analysis of the inflation, output gap
and interest rate responses with respect to the (inverse) risk aversion parameter (o),
the price stickiness (6) and the ratio of output gap to interest rate term weights in the
objective function. We choose to test sensitivity with respect to o and 6 as these
parameters affect the transmission from the demand shock to the economy through the
structural slope of the NKPC, k (Equation 5), and the dynamic IS Equation (4)."°
The literature reports a wide range of the relative weights in the objective functions

and o (Table 2)."' Hence, we conduct sensitivity analysis for p, = A; Jai[Ax =

{%,%, 1,1 %, 6} and o = {1, 2,4, 8}. As for 8, we let it vary according to Table 3:

Table 2
Published estimated weights in the objective function and (inverse) risk aversion parameter
A, 4 Ayi o
Woodford (2003) 0.048 0.236/0.077/0.277 1/0.1571
Givens (2012) 0.0401 0.6309 1.3667
Adolfson et al. (2011) 1.091 0.476 5

A sensitivity test with respect to 5=[0.98,0.99,0.999] showed almost no effect on the results.

' Table 2 reports estimates assuming timeless perspective framework, as these estimates are sensitive
to both the monetary policy framework and to the model of the economy.
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Table 3

Calvo parameter and expected duration of price stickiness (quarters)
fa) 0.01 0.5 2/3 0.75  5/6

Price stickiness ~1 2 3 4 5

6.1. Sensitivity analysis —objective function |

Figure 6 shows the sensitivity of the first period responses of the interest rate, output
gap and inflation to a positive one standard deviation white-noise demand shock
under OFTI to the values of p; = 4;/4, and o in the range stated above, and for
6=2/3."% For example, the dark blue surface in the interest rate figure (left) presents
the combinations of p; and o for which the interest rate rises by less than 0.005%
(according to the color bar) in the first period as a response to the positive demand
shock. Figure 6 reveals that the result of a negative inflation in the first period after a
positive demand shock under OFI is robust (Figure 6, right).

Interest Rate QOutput Gap Inflation

9 0
[l o 3 26 -2 -18 - Rl
an

0 oM 006 om0 s oo 5
Fig. 6. First period response of interest rate (left), output gap (center) and inflation (right) to a positive
one standard deviation white-noise demand shock under OFTI for different values of p; = 4;/4, and O .
“Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s estimation (Table 2). 8=2/3.

12 As @ increases, it mainly affects output gap.
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Figure 7 duplicates Figure 6 for the average of the responses in the first five periods,
and shows that the results obtained under Woodford's benchmark calibration
(Appendix C) are robust under various calibrations - a negative inflation after a
positive demand shock under OFI. The main difference between the first period
impulse response function (Figure 6) and that of the first five periods’ average (Figure
7) is that the output gap becomes negative from the second period onward and thus

leads to the negative inflation responses (Subsection 5.2).

Interest Rate Qutput Gap Inflation

Fig. 7. The average first five periods’ response of interest rate (left), output gap (center) and inflation
(right) to a positive one standard deviation white-noise demand shock under OF]I for different values of
p1 = A;/A, and O . “Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s estimation
(Table 2). 6=2/3.

Figures 6 and 7 show that as p; and o decline, the nominal interest rate responds
more aggressively (left), leading to a lower negative output gap (center of Figure 7,
from the second period onward) and hence to a lower negative inflation rate (right).
The reason for these results is that: I) A lower p; implies a smaller relative "fine" on
deviations of the interest rate term (in both OFI and OFII) to output gap's
deviations—that is, a smaller tradeoff between the interest rate and inflation and the

output gap. Hence the interest rate is less constrained. II) A lower o implies a higher
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slope of the NKPC which yields a higher influence of the output gap on the inflation,

_ (1-9)1-89)
8o2(1+ew)

as from Equation (5) dk/do = < 0. The higher slope also yields,

ceteris paribus, a higher relative weight of the output gap/ lower relative "fine" on the
interest rate in the objective function (Equation (6)). Hence, as p; and o decline, the
interest rate's influence raises. Note, that although the output gap response is not

monotonic (Figure 7, center) it remains negative, leading to negative inflation.

(w+1/0)(1-0%-1)
62(1+ew)

As for 6, as ax/ a0 = < 0, when 6 increases—that is, when

prices become stickier—the policy influence is weaker, following the logic stated
above (Appendix D duplicates Figures 6 and 7 for 6=5/6).

To summarize, Figures 6 and 7 show that under OFI, after a positive white-noise
demand shock, the optimal policy from a timeless perspective leads to a counter-
intuitive negative inflation rate and output gap (from the second period onward) for a

wide range of parameter values.

6.2. Sensitivity analysis —objective function 11

Figures E.1 and E.2 (Appendix E) duplicate Figures 6 and 7 under OFII, and show
that the positive inflation and output gap responses after a positive demand shock
reported in Section 5 are also robust.

The mechanism described in Subsection 6.1 also explains the higher inflation
under OFII, as p; and o decline. Similar to OFL, in OFII as p; and o decline the
nominal interest rate responds more aggressively (left), but in contrast to OFI, output
gap and inflation rate increase.

To summarize, as p; and o decline, the deviation between the inflation response in

OFI compared to OFII increases.

7. Designing Monetary Policy—an Augmented Taylor Rule

We showed that the negative inflation after a positive demand shock under OFI and
the positive inflation under OFII are robust (Section 6). Based on the analysis and the
comparison between the two targeting rules, Equations (7) and (9), we argue that the
difference between the inflation's response under the two tested objective functions

stems from the different inertia of the interest rate in the targeting rules.
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To test this hypothesis, we assume that the interest rate is set according to an

augmented Taylor rule:

iy = pric—q + paic—p + |[1 = (p1 + p)ll (T + T, AX,). (12)

The augmentation consists of (1) the second lag of the interest rate; and (2) of the
absolute value attached to the 1 — (p; + p,) term. Note that the OFI targeting rule
(Equation (7)) is a special case of Equation (12). Under OFI, both 1 — (p; + p,) and
the coefficients of the target variables are negative, t, = —f/A;; 7, = —(fA,)/

(k4;). Hence the representation of Equation (7) in terms of Equation (12) is given by:

pr =1+ (@x+1)/B; p, =B 1~ (py +p;) = —0K/B; (13)
Tp = B/Ai; T = (BAL)/(KAy).

To test our hypothesis, we test the endogenous variables, and specifically the inflation

response, to a positive white-noise demand shock where we let p; vary in the range of

p, = {0.61,0.81,1.01, ...,3.01}" and Z—Z ={-1,-0.8,—0.6, ...,1}. The lower bound
1

of p; is set in accordance with the lower empirical bound. The % bounds are set in
1

order for p, to only mildly offset p;; note that p, can be negative. Finally, we
calibrate 7, = 1.5 and 7, = 0.5 as in the canonical Taylor (1993) rule.

Figure 8 verifies our hypothesis—there is a frontier which separates between a
positive and negative average inflation response under Equation (12). The frontier is
where p; + p, = 1 (the white starred line); for p; + p, < 1 the inflation response is
positive, in accordance with the standard intuitive response, while for p; + p, > 1 it
is negative.'* The frontier is sketched in the range of p; < 2.25, because 2.25 is the
maximum value of p; under the OFI specification in the sensitivity analysis (Section
6). Hence, the augmented Taylor-type rule in Equation (12) can lead to either a
positive or a negative inflation response to a positive demand shock, depending on the

sum of the coefficients of the lagged interest rates, the interest rate inertia.

" When p, + p, = 1, Equation (12) leads to indeterminacy.
' Similar results are obtained for 7, = 1.5 and 7, = 1 or for the baseline calibration of OFI—
T, =4.1658 and 7, = 8.4585.
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OFI-Taylor Rule Type Specification: Average First Five Periods’ Inflation Response to Demand Shock

®

PR

05 { 15 2 25 3

Fig. 8. The average first five periods’ response of inflation to a positive one standard deviation white-
noise demand shock under iy = pqi—q + p2it—y + [[1 = (p1 + p2) ]l (T + TAX,) for different values
of p; and p,. The (white) starred line presents the p; + p, = 1 line—the “frontier”.

Figure 9 illustrates our results and maps the different policy rules in the p; and %

1
region.
Average inflation response to a positive demand shock

p2/pl
1

Negative
Inflation
convergence
from below

0 : :
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inflation i \
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Fig. 9. The average first five periods’ response of inflation to a positive one standard deviation white-
noise demand shock under iy = pyi,_; + poii_y + |[1 = (py + p2)]| (T, + T,AX%,) for different values
of p, and p,.
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The standard Taylor-type rules—where 0.6 < p; < 0.9 and p, = 0—lead to a
positive inflation response (the TR block in the figure). Similarly, Coibion and
Gorodnichenko (2012) as well as some empirical VAR systems with two lags find
that p; > 1, p, < 0 and p; + p, < 1 (the VAR block in the figure). The (theoretical)
OFT area is in the negative inflation response, as was demonstrated in the sensitivity

analysis, because p; +p, = 1 + ox/f.

8. Summary

We compared two broadly used specifications of objective functions for the monetary
authority with respect to the interest rate; a squared interest rate term (OFI) and a
squared first difference of the interest rate (OFII). The main difference between the
tested objective functions is in the inflation response to a positive demand shock—
negative under OFI and positive under OFIIL. The reason for the negative inflation
dynamics under OFI is the strong (denoted in the literature as super-inertial) response
of the interest rate to its lags, which leads to a contractionary monetary policy,
compared with a more smoothed response derived under OFII, which leads to an
expansionary monetary policy.

Based on the comparison between the targeting rules under OFI and OFII, we
show that an augmented Taylor-type rule with two lags of the interest rate can lead to
different inflation responses to a positive demand shock. It leads to a positive inflation
response when the sum of the coefficients of the lagged interest rate (the “frontier”) is
below one, while it leads to a negative average inflation response when the “frontier”
is above one. Hence, setting the “frontier” to be above one, where it is plausible
depending on the lower bound of the interest rate—can be useful in an environment of
inflation that is too low due to negative demand shocks—a conventional tool which
may be used to get unconventional results. The main challenge is how to implement
such a rule and to communicate and deliver the chosen policy to the public, as the

interest rate paths are similar.
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Appendix A - Derivation of the first-order conditions under OFI

The Lagrangian of the central bank's problem under Objective Function I (OFI
hereafter) is given by (Woodford (2003)):

+oi, -or,, ]

t+1

W,=E{> B{0.5[x] + Ax] + i1+ @, [x, —x N
=0 A

+ @2,/[7[1 - kx, - ﬁﬁtﬂ]}’

where ¢, ; and ¢, , are the Lagrange multipliers of the dynamic IS Equation (4) and
the Phillips curve (3), respectively.

The first-order conditions under the timeless perspective policy are given by:

aVVz /a”t =7, 0P /ﬂ+¢2,t P = 0, A2
aVVz /axt = /lx‘xt + Py~ P /ﬂ_’(@z,t =0, A3.
oW,/ 0i, = i, +op,, =0 . A4

These conditions apply Vt in a Timeless Perspective (TP) commitment policy
(Woodford 2003 p. 523). The TP framework assumes that the CB had committed far
in the past, and consequently it has both a direct influence on expectations and a time
consistent policy. One interpretation of the TP framework is that it may reflect policy
of central banks which gained credibility. Adolfson, et al. (2011) use the TP
framework to describe the Riksbank policy, and Minford and Ou (2013) find that the
TP framework fits Federal Reserve policy in the US better than a Taylor rule with
interest rate smoothing.

Extracting the interest rate under OFI from the first-order conditions (Giannoni

(2012)) yields the optimal OFTI interest rate rule, Equation (7) in the main text:
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ir = (ox/A)me + (04, /) Axe + (1 + ok/P)irq + ﬁ_l Aipy, (7)

where Ai, =i ,—i,,.

A.1. Special case - the canonical objective function

The multiplier ¢,, represents the marginal (welfare) loss due to a dynamic IS
equation shift, and ¢, , represents the marginal (welfare) loss due to a Phillips curve
shift.

For the following discussion it is beneficial to treat the canonical objective
function as a benchmark. In the canonical objective function there is no interest rate
term—that is, A; = 0. Hence, the first-order condition A.4 yields ¢,, =0 Vt,
implying that in this case the dynamic IS equation is irrelevant for the optimization
problem of the central bank (see, e.g., Giannoni and Woodford, 2005, footnote 6 and
McCallum and Nelson, 2004). In contrast, in OFI a tradeoff emerges between
stabilizing the interest rate and stabilizing inflation and the output gap when a demand
shock hits the economy. The dynamic IS equation (4) in this case is relevant for the
optimization problem of the central bank, reflected by ¢, ; being different from zero.

Returning to the canonical objective function case, the first-order conditions A.2

and A.3 become:

e+ ¢or — P11 =0, AS.
Axxt - K¢2,t = O. A.6.

These two first-order conditions yield the familiar targeting rule of the timeless
perspective (TP) policy which was proposed by Woodford (2003a), under the

canonical objective function:

Ty = (A /K1) (xp—1 — %) © 1 = —(A /1K) A xy. AT

Under the canonical objective function specification, optimal inflation is a negative
function of the change in the output gap. This result was highlighted by Woodford
(1999) as “optimal monetary policy inertia” regardless of any inertia in the structural

shocks, and is consistent with the “speed limit” policy advocated by Walsh (2003).
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The targeting rule A.7 stems from the commitment of the central bank under the
timeless perspective policy, which binds its action in each date to its previous actions
as reflected in the lagged output gap.

Extracting the interest rate from the dynamic IS equation (4) and using the Phillips

curve (3) and the targeting rule A.7, the interest rate rule is given by:

= x| 5-1g AS.

Hence, in the canonical objective function the interest rate responds to the same
period inflation, output gap and shocks. Furthermore, the interest rate sterilizes the

demand shock, rising by 01 g;.

Appendix B-Derivation of the Optimal Interest Rate Rule under OFII
The Lagrangian the CB is facing is given by:

W= EtZﬂt{OS[ﬂtz + ﬂ’xxtz + ﬂ’Ai(Ait)z] + qpl,t[xt — X7t Git - aﬂtﬂ] B.1
t=0 AL
+ ¢2,t[ﬂt - kxt _ﬂﬂtﬂ]}
The first-order conditions are given by:
aW/a”t =7, 0P, /ﬂ+¢2,t Py = 0 B.2.
oW /ox, =Ax,+¢,—@, /B-Kkp,, =0 B.3.
OW | 0i, = Ay Ai, — PAGE (I, } +op, =0 B.4.
From A.4, ¢, is given by:
= ﬂﬂ’AiEt {Ait+1} _ ﬂ’AiAl.t BS
’ (o2 (o2
Plugging B.5 into B.3, multiplying by Sand extracting @,, yields:
A A 1
@, =—=x, +—L[BE AN, } - 2Ai +—Ai, ] B.6.
K oK )
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Multiplying B.2 by [and inserting the Lagrangian coefficient terms using B.5 and
B.6 yields:

T, — PA AL+ A, Al +ﬂ/1“‘Ax +% E {AAI}—2AAi +iAAi7 1=0 B.7.
t AV g A= -1 i t oK t t+1 t ﬂ t-1

where AAZ/ = A(AZ,) = A(Zz _Zt—l) =z 7y _(Zt—l o Z/—z) = AZ/ _Azt—l
Using AAz,  definition and extracting i, from A.7 yields the optimal instrument

(interest rate) rule, Equation (9) in the main text:

i, =[(ox) (A D7, +[(6A) (A DAY, + (B/DE iy} + (1 B Qi
+[(Q-D/(LDIAI,, —(PQ) ' Ai,,

where Q=o0x+2(1+ f).

©)

Appendix C-Calibration

The baseline calibration (Section 5) is based on Woodford (2003, p. 431) and

Giannoni (2012). Table C.1 shows the values of the structural parameters in these

papers.
Table C.1.
Calibrated Parameters
Parameter Value Description
IB 0.99 Discount factor
& 7.88 Elasticity of substitution among goods
I 2/3 Calvo price parameter
o 1/0.1571 Consumption inter-temporal elasticity of substitution (inverse)
[0 0.47 Elasticity of real marginal cost with respect to production
01 0.236/0.048 Relative weight of interest rate to output gap in the objective function

Sd( g) 15 0.0372/0 Standard deviation of demand shock

' Note that in Woodford (2003) and Giannoni (2012), the shock in the dynamic IS equation is the
natural interest rate, in contrast with the demand shock in CGG (1999). While the specification of the
shock as well as its interpretation differs across the models, the reduced form shocks are identical in

terms of dynamics in the model; f;’ = 0711”te in Giannoni (2012).
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Appendix D-Sensitivity Analysis-Objective Function I, for 8=5/6

Interest Rate Output Gap Inflation
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Fig. D.1. First period response of interest rate (left), output gap (center) and inflation (right) to a
positive one standard deviation white-noise demand shock under OFI for different values of p; = 1;/1,
and O . “Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s estimation (Table 2).
6=5/6.
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Interest Rate Output Gap Inflation

I 1) 10
Fig. D.2. The average first five periods’ response of interest rate (left), output gap (center) and inflation
(right) to a positive one standard deviation white-noise demand shock under OF]I for different values of
p1 = A; /A, and 0 . “Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s estimation
(Table 2). 8=5/6.
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Appendix E-Sensitivity Analysis-Objective Function II, for 6=2/3

Interest Rate Qutput Gap Inflation
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Fig. E.1 First period response of interest rate (left), output gap (center) and inflation (right) to a
positive one standard deviation white-noise demand shock under OFII for different values of p;, =
A/, and O. “Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s estimation

(Table 2). 6=2/3.
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Fig. E.2 The average first five periods’ response of interest rate (left), output gap (center) and inflation
(right) to a positive one standard deviation white-noise demand shock under OFII for different values
of p, =4/, and O . “Wi” denotes Woodford's calibrations and “A” denotes Adolfson et al.'s
estimation (Table 2). 8=2/3.
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