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Forecasting Short Run Inflation Using Mixed Frequency
Data (MIDAS) *

Sigal Ribon and Tanya Suhoy

Abstract

We present a MIxed DAta Sampling model for one-month- and two-months-
ahead forecasts for the monthy changes in the Israel’s CPI. This model enables us
to incorporate daily financial and commodity price data in a monthly model by
imposing a flexible Beta function on the lag distribution of the daily explanatory
variables. Given the lag length, the parameters of those distributions can be op-
timized simultaneously with the regression coefficients. We also consider a more
flexible Bayesian model, enabling to evaluate inter alia the most likely lag lengths,
based on the frequency of their appearance in the Gibbs sample. We find that
the proposed MIDAS specification improves the forecast ability, measured by the
RMSFE (Root Mean Square Forecast Error) and MAFE (Mean Absolute Forecast
Error), relative to a model with uniformly distributed daily lags and a model with
only monthly frequency data. We also find that the preferred timing to perform
the one-month-ahead forecast is on the third week of the forecasted month. The
first two weeks of daily data and information about the previous month’s CPI, both
contribute to the improvement of the forecast accuracy. The addition of the two
last weeks of the month does not contribute to the performance of the model.

KEYWORDS: Inflation, forecasting, MIDAS, Beta pdf, daily data.
JEL classification: C53, E31, E37.

1 Introduction

Forecasting short-term inflation is an important ingredient in the assessment of the
inflationary environment for the implementation of monetary policy. Central banks,
among them the Bank of Israel, use different monthly models for forecasting short-term
inflation, or more accurately, the rate of price changes in the next few months. Among
the models used by the Bank of Israel are: a statistical model (Suhoy and Rotberger,
2006), based on separate forecasts of the rate of change of the ten main groups of the total

*We thank Guy Segal and Avichai Sorezcky for performing simulations of alternative models. We
also thank Avichai Sorezcky and the participants of the Bank of Israel Research Department seminar
for their helpful comments and suggestions.



CPI; an econometric model (Ilek, 2006), taking into account the effect of macroeconomic
variables, a small Bayesian VAR model (Segal, 2010) and a single AR equation (Sorezcky,
2009).

Some of these existing models, and in particular the statistical model, rely heavily
on the ability to forecast the change in the housing component of the CPI which consti-
tutes about a quarter of total CPI. However, the ability to forecast this component has
deteriorated significantly in recent years along with the de-dollarisation of the housing
services pricing mechanism. As long as prices were linked to the dollar, knowing the
rate of change in the exchange rate made it possible to construct a relatively accurate
forecast of this component, and hence of the overall CPI. As the tendency to set prices
in dollars declined, so did the accuracy of the statistical forecast. This development
serves as a major incentive for the present project, which explores a different channel
for improving the ability to forecast short-term price changes.

The aim of this paper is to offer an additional instrument for forecasting short-
term CPI rate of change using an approach known as MIDAS - Mixed DAta Sampling,
which enables to combine data of different frequencies, and in particular the use of daily
frequency data in addition to monthly frequency data commonly used for forecasting the
monthly change in the CPI. The daily data enables us to match data relating to parts
of calendar months, e.g., last 45 days or last two weeks, and the monthly CPI. It also
allows to assign different weights to daily lags of the data.

The MIDAS procedure has become rather popular in recent years. Although there
are alternative procedures that allow us to incorporate high frequency data in forecasting
lower frequency variables, one of the major advantages of the MIDAS procedure is its
simplicity in terms of specification, estimation and computation of forecasts. The first to
introduce this method were Ghysels, Santa-Clara and Valkanov (2002), who proposed the
integration of mixed frequency data within a unified model, while preserving a parsimo-
nious specification by assuming a predetermined distribution for the lagged effects of the
higher frequency data.! Originally this technique focused on volatility predictions (see
for example Chen and Ghysels, 2011). A number of authors employed this technique
in two major areas. The first is improving quarterly GDP forecasts by incorporating
higher frequency data. This was done by Kuzin, Marcellino and Schumacher (2009) for
the euro zone and by others cited by Armesto, Engermann and Owyang (2010). Suhoy
(2010) employed the MIDAS technique for nowcasting quarterly private consumption in
the Israeli economy, using a set of monthly indicators. The other strand of literature
exploits daily data, usually from the financial markets for different analyses. Financial
data may contain potential, additional information to enhance our forecasting ability
because it contains a forward-looking perception of the economic environment and is
typically observed in real time with a negligible measurement error. Armesto, Enger-
mann and Owyang (2010) mention a number of studies in this area. We will mention Tay
(2007) who uses daily stock returns in order to forecast quarterly real output growth,
Ghysels and Wright (2009) who included daily interest rates in a MIDAS model in order

! Andreou, Ghysels and Kourtellos (2010a, 2010b) review other types of regression models that involve
data sampled at different frequencies.



to predict the outcome of a quarterly expectations survey, and Andreou, Ghysels and
Kourtellos (2010b) who test for the improvement embodied in MIDAS factor models and
find that there are substantial gains in forecasting inflation and real activity using daily
financial data within Factor-MIDAS models. They also show that MIDAS models can
efficiently incorporate leading information from daily predictors (nowcasting). Kotze
(2005) uses daily asset prices to forecast the monthly rate of inflation, incorporating
multiple regressors, including interest rates, spreads, stock prices and exchange rates.
He finds that the use of high frequency asset prices does not improve the results of tra-
ditional models with aggregate data. Another recent paper by Monteforte and Moretti
(2010) incorporates daily financial data in a MIDAS model together with a monthly core
inflation index derived from a dynamic factor model, for daily forecasts of euro zone in-
flation. They find that the inclusion of daily variables helps to reduce forecast errors
relative to models with only monthly data. They also find that their daily forecasts are
not more accurate than those extracted from daily quotes of future contracts, but are
less volatile.

We estimate our MIDAS model using two different approaches. The first is partially
restricted so that the lengths of explanatory lags (model space) are assigned based on
empirical regularities. The second approach is flexible, assuming posterior distributions
of daily lengths have to be evaluated, together with the other parameters. In the first
case — when the lag lengths are predetermined — we use a Newton-Raphson optimiza-
tion of Beta-distributed weights and regression coefficients. To proceed with a flexible
specification, we apply Gibbs sampling. After the posterior distribution of daily lengths
is obtained, it enables us to construct a Beta-mixed distribution of daily lags, which
appears to be more plausible. Thus, the daily weights of each explanatory variable
are constructed as a mixture of three Beta distributions with different lengths with the
highest posterior probabilities.

Our results show that the MIDAS model, incorporating daily data with Beta distrib-
uted weights of daily lags with varying lengths, improves the forecasting performance as
measured by the RMSFE and MAFE? relative to uniformly distributed lagged daily data
and to a benchmark monthly model. We also find that the preferred timing to perform
the one-month-ahead forecast is in the third week of the forecasted month, when the
CPI of the previous month is already known and two weeks of daily data are available.
We find that the two weeks’ additional daily data are important at least as much as
the information about the previous month’s CPI which becomes available in the middle
of the month. Comparing our results to other available monthly models in the Bank
of Israel, we find that the MIDAS model performs as well as some of the models and
significantly better than others. The model we present joins the suite of monthly models
currently in use in the Research Department of the Bank of Israel, and as such is ex-
pected to contribute to our ability to understand the inflation environment and project
its short-term development.

The rest of the paper is organized as follows: The next section describes the daily
and monthly data, Section 3 presents the MIDAS model and its estimation and Section

2Root Mean Square Forecast Error and Mean Absolute Forecast Error



4 presents the forecast results. Section 5 concludes the paper.

2 The Data

2.1 Dalily frequency explanatory variables

When assessing the inflation environment, central banks look at a wide range of indica-
tors, including financial variables, as the exchange rate, the yield curve and break-even
market inflation expectations. Financial variables have the advantage of being available
immediately on a daily basis and they are not subject to revisions and updates as are
some other macroeconomic indicators. Assuming perfect markets, which is reasonable to
assume given the fairly deep and sophisticated financial markets, these variables reflect
the public’s perceptions about the "right" prices of different assets, and therefore reflect
correctly their concept about future inflation.

We chose to include several daily financial and market variables:

The exchange rate: The exchange rate is expected to affect price changes in two
ways. The first is the usual effect on prices of imported goods whose price in local
terms depends on the exchange rate as well as their global price (which we also refer
to). Because global price indices are measured in dollar terms, the relevant exchange
rate to be included is the dollar/shekel exchange rate. The second reason for including
the exchange rate goes back to the historic Israeli pricing mechanism in the housing
market, which was characterized until the end of 2007 by dollar denomination of almost
all transactions (buying and renting). Because of the dramatic decline in the share
of dollar denominated contracts in the housing market, this effect is decreasing over
time, and may be expressed by multiplying the dollar exchange rate by the share of
dollar denominated contracts. These two effects of the exchange rate cannot be reflected
sepaerately because they are highly correlated for most of the period. Therefore we try
different specifications, among them, including the effective exchange rate - a basket of
currencies weighed according to Israel’s trade with its trading partners together with the
adjusted dollar exchange rate multiplied by the share of dollar contracts, or specifications
including only the dollar exchange rate - adjusted or as is. In addition to the results
presented, we also experimented with versions that excluded the effective exchange rate
and included only the dollar exchange rate, with or without multiplication by the share
of dollar rent contracts. The in-sample results for these alternative specifications are
very similar to those presented in the table, with a slightly lower R2.

Inflation expectations: The exsistence of both nominal and CPI-indexed government
bonds in the Israeli bond market enables us to derive break-even inflation expectations
for different horizons. We include the one-year ahead market based expectations in our
model. These are often refered to in the monetary policy decision process in the central
bank and are expected to provide an indication about the market’s perception of future
inflation and therefore influence decisions concerning price updating.

Bank of Israel’s rate: Although the Bank of Israel’s rate is normally set only once
a month, because there does not exist a perfect correspondance between the calendar



months and the "liquidity months"? for which the interest rate is set, including a daily
series may be beneficial. In addition, this allows forecasts from the middle of the month
(17t") to include the relevant interest rate for the different daily lags included, instead
of computing some weighted average rate of the monthly interest rate.

Commodity, food and fuel price indices: As mentioned before, world prices affect
the CPI directly through the prices of imported final goods, but also have a significant
indirect effect on the prices of local goods through the prices of intermediate goods,
especially energy prices.

We use different variables as indicators of world commodity prices, as will be de-
scribed below. Although we do not expect local prices to follow daily fluctuations in
these indices, the option to choose the right lag and range in which these variables
may affect local prices may improve the ability to understand and forecast monthly
price changes. The specific indices we examine are the oil price, as Cushing oil prices
published by Bloomberg, and Bloomberg's agricultural commodity prices.?

We also tried to include the daily changes in the TASE share index, as a proxy for
wealth or expectations about future real activity, but the effect of this variable was found
to be insignificant. Another variable we tried to take account of tax changes - changes
in the rate of VAT and in the lump-sum tax on gasoline. Neither had a significant effect
and therefore they were dropped from the estimation. Still, information about expected
changes in these taxes may be included by discretion in the process of forecasting.

Our sample consists of data from November 1999 to September 2010 (a total of 131
months). All financial variables, except for inflation expectations and the Bol interest
rate are expressed as log differences. Some of the financial variables do not have actual
data for days which are not trading days.? In order to avoid discontinuities in the data,
missing values for these days were completed by interpolating the levels of the data for
missing days, taking into account the intra-monthly seasonality due to the trading days
effect.

We present some basic statistics for the daily variables and the monthly change
in the CPI (dp) in Table 1. For the daily frequency variables, the mean represents
the average over the sample of the monthly averages of the daiy rate of change in the
variable (excluding the Bol interest rate and inflation expectations, which are expressed
in levels). The standard deviation is that of the monthly average rate of change. We
also persent the mean monthly standard deviation, which is the mean of the standard
deviation of the daily changes (or levels for interest rate and expectations) within each
month.

As seen in the table, there is considerable variation in the daily rate of change of the
financial variables (second column from the right), and also changes in the magnitude of
variation between daily changes between different months (first column from the right).

3 A liquidity month starts on the last Thursday of the previous calendar month.

“We checked alternative specifications with Bloomberg’s CRB index which is constituted from a large
number of price indices and Bloomberg’s forward food index, but found that the estimation results with
the agriculture index are better.

*Trading days in the FOREX market do not include Saturday and Sunday. Inflation expectations,
derived from the bond market, do not have data for Fridays and Saturdays.



Table 1: Mean and standard deviation of daily changes. Inflation expectations and Bol
interest rate in levels; all other variables in rate of change. 1999.11-2010.9

Mean daily value (%) | Std. of daily value (%)

Between months Average | Std. Average Std.
Inflation expectations (level) 1.90 0.81 0.003 0.002
Bol interest rate (level) 5.00 2.70 0.066 0.134
$ exchange rate -0.004 0.064 0.313 0.154
$ exchange rate * $ contract share | -0.003 0.038 0.195 0.091
Effective exchange rate -0.001 0.070 0.390 0.150
Oil prices 0.044 0.319 1.766 0.641
Agricultural commodities 0.018 0.137 0.725 0.216
dp (monthly) 0.17 0.504 - -

The average daily rate of change in commodity prices is relatively large (first left column),
and the daily standard deviation (within a month) is very substantial.

2.2 Monthly frequency variables

The monthly frequency data we include in the specification are the lagged monthly
log differences of the CPI, which were found to improve the estimation results, and the
monthly dummy variables to take account of seasonal effects and the holiday-adjustment
shift variables to correct for the Jewish holidays.

3 The model and its estimation

3.1 The general framework

In this section we present the mixed frequency model we use in order to estimate and
forecast the rate of CPI changes. As mentioned above, the specification allows us to link
the change in the CPI which is measured monthly and information from the markets,
and in particular the financial market, which is, by nature, measured in daily frequency.
The main idea of the MIDAS framework is to construct monthly frequency variables
using daily data together with some assumptions on the distributed lagged effect of
the daily variables on the monthly aggregate, or in other words, to look at a weighted
average of daily variables, with the lags weighted according to a chosen distribution.
Once the monthly variable is constructed, we are back to a "regular" monthly frequency
estimation. The general form of the equation will be:

N K
&
(1) T = Go + E 5z’§ bz’(kﬁ)LK“Eﬁt‘FV,Zt‘FEt,
i=1 k=1



where 7; is the monthly inflation rate; for each variable %, b; (k;0) is a function of a
small set of parameters, @, determining the lag distribution; K is the number of daily
lags of variable 7; N is the number of daily variables; and Z; is a set of monthly variables.
Specifically, we write :

f(k:0)
K;
2N (k;0)

We assume a specific distribution for the effect of the daily data on the monthly
inflation rate and choose to concentrate on the common Beta distribution, proposed by
Ghysels et al. (2002), because it is very flexible and allows for a wide range of specific lag
distributions.” The Beta pdf specification for each variable i, includes three parameters:
K, 01 and 602 that have to be set:

-1 01—1 02—1
(3) £ (501, 0) = <w> <ﬁ> <1 . ﬁ) |
(01 + 02) K K

where k is the lag and K is the assumed length of the wave for variable ¢, so that % is
between 0 and 1. I' is the Gamma function: ['(s) = fooo e "V* ldv. The Beta density
is very flexible and allows many shapes of the weighting function, depending on the two
parameters 61 and 05 including a uniform distribution, hump, or a decreasing density
function. As a particular case, the uniform distribution can be viewed as Beta(1,1); Beta
with 01=1 05>1 is strictly decreasing and Beta with ¢;>1 and 0,=1 is strictly convex.
When 61=05 the density is symmetric about 1/2.

Equation (1) may include as one of the monthly Z; variables the inflation rate in the
previous month, w1, representing the inflation environment with an AR(1) process,
and implying a backward-looking perception of the inflationary process. In addition,
we also represent the inflationary environment by daily market based break-even infla-
tion expectations,® as one of the N daily-frequency variables that are included in the
model, implying a forward-looking process of the inflation.? In addition, the Z; vector
of monthly variables includes only monthly seasonal dummy variables and an adjust-
ment variable for shifting the Jewish holidays, based on the lunar year, relative to the
Gregorian calendar. We may write Equation (1) as:

(2) bi (K;0) =

N K;

(1a) T =1 + Zﬁizb(k; 0) L%"Eﬁt ++'Di +é&
i=1 k=1

SFor the sake of brevity we omit the index 4 from the parameters of the distribution.
"The other common distribution is the exponential Almon polynomial, introduced by Almon (1965),

which assumes: f (k;80) = O1h+02k 4. +00k? iy Q@ and @ predetermined.

$We found that the inclusion of lagged inflation, together with the daily break-even market expecta-
tions improves the fit and the forecast ability of the equation.
9Expected inflation itself may be backward looking to some extent.



where = includes the daily variables, and Dy is the vector of dummy variables and the
calander-adjustment variable.

In order to evaluate the improvement embedded in the inclusion of daily data, we
set two benchmark models. The first includes daily data with the same lag length, Kj,
but uniformly distributed. This will enable us to evaluate the improvement that may
be attributed to the non-uniform distribution of the lagged effects of the daily variables.
The second benchmark model will include the same financial variables, but as monthly
averages instead of daily data. That is, we revert to the "standard" monthly model. The
monthly data restricts us to a wave with a length of full months, and the lag available
is that of the difference between the time of the forecast and the end of the previous
month (or a number of months before that). This will allow us to check the importance
of using daily data.

3.2 Parameter Estimation

The inclusion of daily data in the model offers a range of possible specifications of the
model and its estimation. The three parameters that have to be set for the Beta distrib-
ution for each of the daily variables are the number of daily lags K - the maximum lag we
assume to have any effect on a given month’s inflation, and 6; and 05 which determine
the shape of the distribution of the lagged effects. Thus, we consider our MIDAS-model
in two approaches: the first is partially restricted so that the lengths of explanatory lags
are assigned upon some empirical knowledge. The second approach is flexible, assuming
posterior distributions of lag lengths have to be evaluated, among other parameters. In
the first case — when the lag lengths are predetermined — we use a Newton-Raphson op-
timization of the Beta-distributed weights and regression coefficients. To proceed with
a flexible specification, we apply Gibbs sampling. As soon as posterior distribution of
daily lengths is obtained, it enables us to construct beta-mixed distribution of daily lags,
which appears to be more plausible. Thus, the daily weights of each explanatory variable
are constructed as a Beta-mixture with three different lengths with the highest posterior
probabilities.

Although the Bayesian technique has been widely applied since Albert and Chib’s
(1993) and Chib and Greenberg’s (1995) seminal papers, its empirical applications in
the MIDAS-field are not many. An example is Owyang (2009). Rodriguez and Puggioni

(2010) suggest Bayesian approach for estimation of MIDAS- models. They argue this
approach is helpful, first, in evaluation of the model space, i.e. the length of high-
frequency lags of the explanatory variable, and second, in estimation of beta-distributed
weights and regression coefficients. In the multivariate MIDAS where the lengths of daily
lags of explanatory variables are unknown, optimization over the model space and over
the parameter space is cumbersome. Alternatively, Bayesian framework takes advantage
of "the promising lengths", identified by their higher posterior probabilities. Simulation

of beta-distributed weights at various lag lengths attracted our particular attention. We
contribute a Gibbs-sampling scheme enabling to estimate the most likely lag lengths of



daily explanatory variables, the appropriate beta-parameters and regression coefficients
at each time of forecast. This scheme builds on MCMC methods of parameterization
of beta-distributions (Norets and Tang [2011]) and Bayesian model selection (Geweke
[1994] and George and McCulloch [1993, 1997]).

The Newton-Raphson approach is described in section 3.2.1. The Bayesian approach
is presented in detail in section 3.2.2. We show that both methods result in similar
parametrization for some of the variables, but differ for others. In particular, the Beta-
mix distributions have thicker tails and therefore larger weight on longer lags of the daily
variables. Nonetheless, the regression coefficients are very similar for both methods.

3.2.1 The Maximum Likelihood approach

In order to get a first assessment of the set (K, 01,02) for each of the daily variables we
checked the correlation between the monthly change in CPI and weekly lags of each of the
daily explanatory variables, and chose by discretion a Beta distribution that generates
a similar lag distribution. The resemblance between the theoretical Beta distributions
and the empirical correlations'® may be seen in Figures la and 1b. Of course, the
correspondence between the two is not unique; nontheless, the general characteristics
such as skweness or symmetry of the lag distribution are evident.

The correlation between the exchange rate and prices is hump-shaped and lasts
about two months. The correlation of inflation expectations with prices deteriorates
monotonically, fuel prices effect is maximized with some lag and other commodity price
indices correlate with local prices with a relatively long lag. The Bank of Israel’s interest
rate correlates with prices in a close-to-uniform manner, as expected, due to the fact
that it is changed only once a month.

Based on the empirical characteristics shown in figures 1a and 1b we choose the lag
length of each of the explanatory variables (model space).Given the wave length, K,
we estimate jointly the sets of (61,63) for each of the daily variables, together with the
aggregate coefficients ((q, 5;, and v in equation (la)) - altogether 23 parameters. The
optimization is achieved analytically using the Newton-Raphson algorithm to attain
maximum likelihood.'!.

It should be noted that the information available and therefore the shape of the lag
distribution depends on the point in time in the month we perform the forecast. As the
change in the CPI for a certain month is published only on the 15" of the following
month, month #’s CPI may be forecast during the month itself and until the 14" of the
t + 1 month. The parameters presented here are for estimations using information until
the 17" of the month of interest. In the next section we test for forecasts made on the
27 and 17" day of month ¢, and on the 2nd day of the following month, when all the
relevant information for the month of interest is already available. Table 2 presents the

'0The correlation between the change in the monthly CPI and lags of the average weekly change in
the daily variables was computed by using the rate of change in the CPI attributed to the middle week
of each month using cubic interpolation of the monthly data to weekly data.

"When the day of forecast shifts to the beginning of the month, we had to restrict the Beta parameters
to be positive.



shifts in the optimal Beta parameters (61, 62) according to the Newton-Raphson method,
for different dates of prediction.
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Figure la: the correlation between lagged explanatory variables and
inflation, and the corresponding Beta distribution, for the 17th of the
month of interest; local variables.
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Figure 1b: The correlation between lagged explanatory variables and
inflation, and the corresponding Beta distribution, for the 17th of the month
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Table 2: Initial and optimal Beta parameters for different dates of forecasting

Explanatory variables at o Optimal parameters for specification with
daily frequency K (Igmgl) agricultural commodities
1, V2
starting on starting on 2 startingon 17 | starting on 2
17 of the of the month of the month of the next
month in in prediction” | in prediction” month?
prediction
Effective exchange rate, 60 (2,3) (3.8,5.8) (1.8,2.5) (1.8, 1.1)
$ exchange *contract ratio 45 (3,4) (1.7, 8.5) (9.3,17.4) (21.5,10.9)
fuel prices 60 (2,2) (6.7,10.7) (10.6, 6.2) (11.6, 2.6)
Inflation expectations 30 (1,4) (0.1*,19.2) (6.9,42.8) (0.1*,42.6)
Agricultural commodities 130 (6, 10) (2.9,3.5) (3.5,3.8) (5.5,3.0)

Notes:

* Constrained by the lower bound=0.1.

" Running with an intercept (assuming AR(1) is unknown).
% Running with AR(1) and no intercept.

3.2.2 Estimation according to the Bayesian approach

We proceed now to the flexible MIDAS-specification, which allows us to infer lengths
K; from their posterior distributions, as all other parameters of the model. The estima-
tion entails Gibbs-sampling with embedded Metropolis steps. The most likely lag lengths
are identified by their more frequent appearance in the Gibbs sample and the parameters
of beta-polynomials are derived conditionally on these lengths. Our sampling scheme is
organized as follows.

We initialize uniform priors for daily weights of explanatory variables covering data
from the past month until the time of forecast; that is, the polynomial weights are
Beta(45,1,1) if the forecast is made on the 15*"day of the month. Given this, initial
regression coefficients () and variance (¥g) can be easily obtained via the OLS.

Thus, we enter an iterative process, where each draw is conditional on the previ-
ous one. Each iteration simulates all parameters of equation (1) drawn in a particular
sequence: the regression coefficients (3), the variance (¢02), the lag lengths (K) and
the parameters of beta polynomials (#). Note, that secondary order of draws has been
imposed on lag lengths and beta-polynomials, with respect to multiple explanatory vari-
ables. The likelihood function, used within the Metropolis steps is:

(4) L(m | B,K,0) = exp [—% <7r — ZB)I <7r — ZB)]

£

where Z includes all explanatory variables, i.e. an autoregressive term, beta-weighted
daily lags (Xb), seasonal dummies and calendar shifts(D) and 8 = {a1, 8,7} includes
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all slopes.
Below are steps during the (¢ + l)th iteration of the sampler.

~t+1
1. Drawing regression coefficients 8  conditional on the data and all parameters
~(t+1
drawn at the #* iteration, i.e. 6( ) | 7, X, agt), K®, 0

(5) BN <(251 +022'2) Y (BySet + 022/ 2) L (9t + agz’Z)>

2. Drawing variance ag(tH) | ﬂ',X,B
1 1 €
(6) — ~ Gamma <— E)

where T is the sample size (in months) and £’e is the sum of squared residuals.

~(t41
3. The length of the i** explanatory variable, KZ»(tH) | m, X, 6( "

C o Kfil), Qgtfll), Ki(f:l), 055:1)’ K](\t,+1), Qg\t,H) has been simulated as a contingent
selection (Geweke, 1994), i.e. each specific lag is allowed only if all shorter lags of

the same variable also enter. The lengths have been drawn sequentially (with a

)7 Ug(t—&-l)’ Kit—&—l)’ 0§t+1)’

step of 5 or 10 days) over an interval, predetermined for each explanatory variable:
for exchange rates — from 30 to 70 days; for inflation expectations — from 5 to
30 days; for agricultural commodities and fuel prices — from 30 to 120 days. The
candidate length K7 considered by the corresponding Metropolis step is accepted
with a transition probability , defined as follows:

(7)

7 )1 i+1

. min{ L(ﬂ' | K;F,X,ﬁ(t—ﬂ), O'gt—H), Qgt—H), . 0(}15—&-1)7 . 0%—&-1)’ Kit—H) K(t+1), K(t+1), . K](\l;+1))

Lz | KO, X, gt g0 i) gliel) | gUn) peliv) peliv) gt gl

4. Parameters of the beta distribution for the it explanatory variable, i.e.

t+1 S+ 23141 t+1) p(t+1 t+1 t+1 t+1) p(t+1 t+1) p(t+1
PR | X, D 2O 4D g el ) ) ) ) s
have been derived conditionally on the regression coefficients and the variance,

drawn during the current iteration, as well as on the beta-parameters of remain-
ing explanatory variables, drawn previously, depending on the predetermined or-
der of draws.'> We follow Norets and Tang (2011) which pick parameters for
beta-distributions accordingly with the method-of-moments estimators. Let the
explanatory variable x have K daily lags (assigned at step 3), and change over the
interval [I, h] with the mean ave(z) and the variance var(z).'* The method-of-
moments estimates of beta-parameters 6 = {01, 02} are:

(8) 01 =ms and 03 = (1 —m)s .

12This order does not affect posterior distributions, since a large portion of first draws has been
removed.
3Here and henceforth the index i of the explanatory varibles is omitted, for simplicity.
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where m = ‘wz(fg*l, 5 = % -1, war(m) = ;(c;:g;z The values of s(tt1)
t4+1)

and m/( are drawn from Gamma(u,v) and Beta(g1, g2),respectively, while the
transition densities ¢ and g, within the Metropolis step are defined as:

1 1\ !
(9) gs ™~ Gamma u(t) + ug — 1’ <— + —
v® v,

(10) G ~ Beta <g§t) n ggo) _ 1,g§t) n géO) _ 1)

J4_ ar(@)?

s(0)2 var(s(®) 2
W = gy o0 = L var(sW) = — i (m)*(1 - m")? dt =
C(-D¥
S(z—ave(x))*
(h—1)AK
and the initial values are: ggo) = géo) =2, u® = 1.2 and v(® = 100 , tuned

to achieve reasonable acceptance rate. The candidate draw s* is accepted with
probability
(11)
[ L(r | st m@D, X, 30D oD g@)g (500 | 56D, x, g+ 1
Qg = min 5y
L(r | s®,m®, x, 3+ D g 0)g,. (s* | st+D), X, BE+D)

The candidate draw m™* is accepted with probability

(12)
* o (t+1) (t+1) ) ®) (®) (t+1) (t+1)
Ckm:min L(7T|m,s 7X7/8 7K )Qm(m |S 7X7/8 ),1 )
L(r | m®), 50, X, 304D, 60D [®)g,, (m* | s+, X, 50D

Further expansion of expressions for a; and «, should be done regarding the mul-
tivariate structure of the model. With regard to the it" explanatory variable, addi-

(t4+1
yO0e

(1
yO0e

tional conditioning is required on parameters KYH), Qgt“), e KZ»(tjl), Qgtjll), Ki(f{l)
,ngll), K ](\t,H), Q%H) drawn at the current and previous iterations.

From a total of 1000 iterations the first 500 have been discarded and the subsequent
500 are used to obtain expected values of the parameters and their standard er-
rors. Concerning posterior distributions of lag lengths, we identify the most likely
ones as having the highest frequencies in the Gibbs sample. Thus, the posterior
distributions of {s,m} and corresponding expected values of # are derived condi-
tionally on these lengths. In the out-of-sample experiments, we apply a mixture of
three beta-polynomials, computed upon the three most likely lag lengths of each
explanatory variable.Then, the one-step-ahead forecast equation takes form:

S S B L )
N 2o A Dbk 0i) LT )y
j=1 k=1 ’

(13) T = (-1 + ZB +7D;
pa (A1 + A2+ A3)
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where (;, 5, and 7 are expected slopes. K;1, K2, K;3 are the most likely are
lengths of the it" explanatory variable, having posterior probabilities Aj, Ao and
Az and respectively. 61, 0,9, ;3 are three pairs of beta-parameters, derived upon
lengths K;1, K2, K;3 from the corresponding posterior distributions {s;1,m;1},
{si2, ms2}and {s;3,m;3}.

3.3 Comparing methods

We compare the results of the estimation according to the two alternative approaches -
the Bayesian approach and the Newton-Raphson procedure with the initial distribution
based on empirical regularities.'*

3.3.1 The Beta parameters

Table 3 presents the (K, 61,0) parameters of the daily distributions of each of the
variables. For the Bayesian approach we present the beta-mixture, described in Section
3.2.2. The estimated parameters, the posterior probabilities of the lag length and the
corresponding 6 parameters, derived based on equation (8), are presented in Table A.2
in the Appendix.

Table 3 presents the Beta distributions according to both methods and shows that
in some cases the Bayesian method and the Newton-Raphson method result in visually
similar Beta distributions, but in other cases the Beta-mix procedure results in thicker
tails and more weight on longer daily lags, possibly in a double-humped shape. The
exchange rate - both the effective and the dollar exchange rate augmented for the share of
dollar rent contracts - have the maximal effect within 20 to 30 days prior to the estimation
date on the 17" of the relevant month. The effect of the inflation expectations becomes
much smoother, closer to uniform, according to the Beta-mix estimation. Fuel prices
affect prices both immediately, probably directly through gazoline prices, and with a
longer lag, representing indirect effects on energy prices like electricity. The agricultural
commodities price index has a prolonged effect of 2 to 3 months prior to the month in
interest, according to both methods.

3.3.2 The regression coefficients

Next, we compare the monthly estimation coeffiicients resulting from the two alterna-
tive methods and for the benchmark models. Table 4 shows the regression coefficients
attained using the Newton-Raphson method, and the expected value of the coefficient,
according to the distribution attained using the Bayesian method. Looking at the figures
it is apparent that the values of the coefficients are generally very similar. The standard
errors according to the Newton-Raphson optimization show that all variables have a
significant effect on the estimated monthly change in the CPL.

" The daily distribution of the Bank of Israel interest rate is assumed to be uniform and is not
optimized, as is the distribution of the other variables.
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Table 3: Daily distribution parameters: According to Bayesian Mixed beta and Newton-
Raphson methods, estimation on the 17th

Beta Mix (Thick black) Beta Mix (Thick black)
and source distributions and NR estimation
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Table 4: Estimation results for Beta model and benchmark models.

Monthly | UNIFORM [ Newton- Bayesian Beta-
data Raphson mix
Coeff. Coeff. Coeff.
(std. (std. error) (std. error)
error)
dp(-1) 0.34 0.25 0.26 0.24
(0.08) (0.06) (0.05) (0.06)
Effective nominal 0.06 2.26 3.01 2.07
exchange rate (0.02) (0.66) (0.44) (0.54)
Effective nominal -0.08
exchange rate (-1) (0.02)
Dollar exchange rate * 0.06 3.71 1.85 3.53
contract ratio (0.03) (1.09) (0.50) (0.97)
(Dollar exchange rate * 0.01
contract ratio)(-1) (0.03)
Fuel price (§) 0.014 0.20 0.26 0.25
(0.003) (0.11) (0.06) (0.12)
Fuel price ($)(-1) 0.004
(0.004)
Inflation expectations 0.06 0.10 0.11 0.10
(0.03) (0.03) (0.02) (0.02)
Agricultural 0.007 1.12 0.82 0.77
commodities index (0.007) (0.40) (0.27) (0.25)
Agricultural 0.001
commodities index(-1) (0.007)
Agricultural -0.001
commodities index(-2) (0.007)
Bol interest rate -0.00 -0.03 -0.03 -0.02
(0.00) (0.00) (0.01) (0.01)
Seas. dummies and
holiday shift YES YES YES YES
Adjusted R 0.65 0.69 0.77 0.73
RMSE in sample 0.30 0.28 0.24 0.26
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The tables presented display similar in-sample results using the two alternative meth-
ods. The Bayesian algorithm results in Beta distributions similar to these attained by
the Newton-Raphson method, although the initial weights in the Bayesian approach
are assigned uniformly, far from the empirical distribution set as initial values for the
Newton-Raphson method. The coefficients for the aggregated data also display consid-
erable similarities. According to these results, and considering the relative simplicity of
the Newton-Raphson method relative to the Bayesian procedure, in particular for recur-
ring out-of-sample exercises, we proceed with the Newton-Raphson method for further
analysis of the forecasting characteristics of our model.

3.3.3 Alternative specifications

The preferred specification was estimated for the log difference of the "original" CPI,
adding seasonal dummies and holiday shift variables as explanatory variables. Alter-
natively, we also estimated (using the Newton-Raphson procedure) a version for the
seasonally adjusted CPI, dropping the seasonal dummy variables from the estimation.
According to the results for this estimation, shown in Table A.1 in the Appendix, it is
apparent that the economic factors contribute a major share of the variation in the rate
of change of the CPI, and seasonal factors make a smaller contribution to the explana-
tory power. Table A.1 shows that the adjusted R? remains relatively high, at about 50
percent, when estimating the log difference of the seasonally adjusted CPI with the daily
financial data. As the explanatory daily variables are not seasonally adjusted, although
there may be seasonal effects in their dynamics, we prefer the estimations relating to the
log difference of the original CPI which includes seasonal dummy variables and holiday
shifts among the explanatory variables.

3.3.4 Benchmark models

The first measurement is a uniform distribution of the daily changes in the variables
over different lag lengths, as specified in the table. The second is a model estimated
using variables based on monthly data, i.e., the rate of change is calculated between
average monthly levels of the variable of interest. This alternative is close to, but not
identical with the first benchmark case (the average rate of change is not equal to the
rate of change of the average). All estimations are assumed to be conducted on the 17"
of the relevant month, and include the lagged inflation rate. As seen in the table, the
regression coefficients are similar for all methods. The preferred MIDAS specifications
yield considerably higher R? than the other two specifications. The specification with
the monthly data includes monthly lags which are comparable to the wave length in the
Beta specifications. Therefore, agrcultural prices, for example, appear with the last full
month available and 2 additional lags - 3 months in total, similar to a wave length of
130 days. The coefficients’ magnitude is proportional to the length of the wave. We will
explore the out-of-sample properties of these models in the next section.
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4 Forecast Results

Based on the estimation results we test for the properties of the one-month and two-
months-ahead forecasts attained using the MIDAS approach. In order to compare the
models we proceed by estimating each of them starting from November 1999 to date
T, and then forecasting, based on this estimation, the next month’s unknown value of
the change in CPI. We employ this procedure for T ranging from December 2007 to
August 2010. This means we have 33 one-month-ahead forecasts from January 2008 to
September 2010. This period was selected because it was found to be the period for
which the statistical model produced the largest RMSFE. For each subsample we re-
optimize simultaneously the Beta parameteres together with the regression coefficients
using the two alternative procedures - the Newton-Raphson algoritm and the Bayesian
approach.

4.1 Comparing specifications

After compiling the series of forecasts, for each alternaive we compute the RMSFE and
the MAFE. As mentioned above, because the MIDAS estimation is based on daily data,
in order to forecast the rate of change in the CPI in month T + 1, which is published
only on the 15" day of the next month, the daily data we have available depends on the
timing of the forecast. Therefore, we check for the quality of the MIDAS-based forecasts
for forecasts formed on the 2" of the current month, when we still do not have the
information about the CPI of the past month; on the 17" of the month of interest, when
we have two weeks of daily information and data for the past month’s CPI, and on the
27 day of the following month, when all relevant daily data for the forecast month is
already available. Table 5 presents the RMSFE and MAFE for the MIDAS model for
alternative forecast dates, with or without the AR term (rows 0 to 4) and for the uniform
distribution and monthly data benchmark models for different dates of forecasting (rows
5 to 10).

We show that the forecast based on the Beta-mixture procedure performs somewhat
better than the Newton-Raphson approach and that he best performing model according
to these tests is the MIDAS model for forecasts executed on the 17" of the month of
interest (rows 0 and 1 in the table). The one-month-ahead forecasts together with the
actual values, are presented in Figure 2.

Next we compare the results for different forecasting dates. Moving from the 27¢ of
month 7 to the 17*" of that month, two additional types of information are made avail-
able. The first is additional daily information for the two weeks of the month, and the
second is the CPI of month 7' — 1 available on the 15" of each month. We check the
significance of these contributions by comparing the difference in the quality of fore-
casts between the 2"? and the 17" both without the AR component (rows 2 and 3),
exhibiting the additional daily information, and then comparing the forecasts made on
the 17"" with or without the AR component, representing the contribution of the in-
formation about the lagged CPI (rows 3 and 1). The RMSFE and MAFE improve on
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Table 5: RMSFE and MAFE for different specifications of the MIDAS model and for
monthly averages, out-of-sample one month ahead forecasts forecast 2008.1-2010.9

Model Time of forecast | AR | RMSFE | MAFE
0 | MIDAS - Beta mixture 17" of month T yes .258 213
1 | MIDAS - Newton Raphson | 17" of month T yes 275 .219
2 2 of month T 1o 330 260
3 1774 of month T 1o 290 243
4 27 of month T+ 1 | yes 280 222
5 | Uniform dist. 2" of month T no .342 .289
6 17t of month T yes .325 271
7 27 of month T+ 1 | yes 314 234
8 | Monthly data 27 of month T no .361 287
9 17t of month T yes 318 .267
10 27 of month T+ 1 | yes 283 220

both stages, expressing the contribution of both components to a more accurate forecast.
Waiting until the beginning of the following month and gaining additional daily data
for the second half of the month does not improve the forecast (rows 4 and 1), meaning
that the information embedded in the first half of the month is the most relevant for
forecasting price changes in the same month. For the two benchmark models we find
that the best performance is achieved by waiting until the beginning of month 7"+ 1
(rows 7 and 10).

Comparing the three models, given the forecasting date, we find that the Beta-
distributed MIDAS is always superior to the model with uniformly distributed daily
data and the monthly model. The performance of the MIDAS model is similar to that
of the monthly data model only when the forecast is executed at the beginning of the
next month (rows 4 and 10). The forecast based on the uniform distribution, using
the preferred specification and timing of the Beta model, perform worse than any of
the MIDAS models, suggesting that the non-uniform lag distribution of the daily data
contributes to the goodness-of-fit of the forecast. Comparing the uniform distribution
of daily data with the forecasts based on monthly data, we find that the daily uniform
model does not outperform the monthly model (rows 5-7 vs. 8-10). This is not surprising
due to the fact that the difference between the average of daily changes (uniform daily
data) and the average monthly change is not substantial.

4.2 Comparison with other models

The Research Department in the Bank of Israel refers to a number of models for short-
term forecasts, mostly one month ahead, of the change in the CPI. The first is a statistical
model (see Suhoy and Rotberger, 2006) which is based on estimating the trend, seasonal
factors and additional exogenous effects for each of the main components of the CPI.
Another existing model is a simple AR equation (Sorezcky, 2009). A third monthly model
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Figure 2: Actual (red diamonds) and the one-month-ahead forecasted according to
Newton-Raphson (blue) and Bayesian method (dashed green) monthly change in CPI,
2008.1-2010.9.
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for short run inflation forecasting is an econometric model (Ilek, 2006) incorporating
macroeconomic variables. The fourth model is a small BVAR model (Segal, 2010), which
forecasts total CPI as a sum of two components - the housing component in the CPI
and the CPI excluding this component. In addition, the Bank refers in its decisions to
the average forecast made by local forecasters, most of them representing the economic
units in large commercial banks or other financial institutions.

Table 6: RMSFE and MAFE for alternative models, out-of-sample forecast 2008.1-2010.9

Model RMSFE | MAFE
Statistical model 473 372
BVAR model 375 .295
AR equation 327 .253
Econometric model 274 216
Forecasters average .259 191
MIDAS - Newton Raphson 275 .219
MIDAS - Beta mixture .258 .213

In Table 6 we present the RMSFE and MAFE for these models and for the MIDAS
model. While the forecasts of the statistical model, the BVAR model and the AR equa-
tion were computed based solely on the output of the models, the comparison with the
econometric model and the forecasters average was done based on the published fore-
casts at the time. These forecasts implicitly include the forcasters’ discretion, including
adjustments due to external information and professional judgement. Therefore, this
comparison is biased in favor of these models. Even so, according to the table, the MI-
DAS model, and in particular its Beta-mixture version, preforms at least as well as all
other models. It does much better than the statistical model, the BVAR model and the
AR equation. According to the RMSFE, it is also better than the econometric model.

For two of the alternative models - the statistical model and the AR equation - we
compared the quality of the one-month-ahead forecast for a later period, starting from
January 2010 to March 2011. The results in Table 7 show that for the later period all
models do better and that the MIDAS model is still better than the other two models
that were checked.

Table 7: RMSFE and MAFE for alternative models, out-of-sample forecast 2010.1-2011.3

Model RMSFE | MAFE
Statistical model 0.285 0.190
AR equation 0.290 0.219
MIDAS Newton Raphson | 0.224 | 0.180
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4.3 Significance of improvement

Although the comparison of the RMSFE of the models shows the superiority of the
MIDAS forecast on the 17*", we checked the improvement in forecasting accuracy more
carefully using the test proposed by Harvey, Leybourne and Newborne (1997) for com-
parison of forecasts by observation. The results are presented in Table 8.1 The first
panel of the table shows that the MIDAS model'® is significantly better than the uniform
distribution model - asserting the advantage of the distributed lags of daily data over
the simple uniform distribution. The MIDAS model also yields better forecasts than
those using the monthly data, though not significantly better. The second panel analy-
ses the contribution of the daily data and the known CPI to the improved performance
of forecasts performed on the 17" vs. forecasts made on the 2™ of the same month.
Part ITA shows that moving from the 2" to the 17" significantly improves the forecast
error. The next two parts of the table, IIB and IIC, investigate the contribution of two
types of additional information. None of the two components contributes substantially
more than the other and both of them werre found to be insignificant. Nonetheless, the
contribution of the additional daily information is "almost" significant, while the addi-
tional CPI information is not significant. This is important for the MIDAS modelling,
affirming the importance of the daily information.

Table 8: Test for significance of improvement in RMSFE, 2008.1-2010.9.

| | Test value | Probability

I. Hp: MIDAS* on the 17*" is better than benchmark models

Uniform distribution (on 17" of month ) -1.93 0.05

Monthly data -1.15 0.26

ITA. Ho: MIDAS on the 17% with AR is better than MIDAS on the 2t without AR
| 173 | 0.09

IIB. Ho: MIDAS on the 17" without AR is better than MIDAS on the 2t® without AR
| 118 | 0.25

IIC. Ho: MIDAS on the 17" with AR is better than MIDAS on the 17" without AR
| 021 | 0.84

III. Ho: MIDAS on the 17" is better than other models

Statistical model -3.16 0.00

BVAR model -1.95 0.06

AR model -0.92 0.36

econometric model 0.24 0.81

Forecasters average 0.57 0.58

* In this table we refer to MIDAS estimated using the Newton Raphson method.

15We did not perform the test for the later period 2010.1-2011.3, presented in Table 7.
16We compare other models to the Newton-Raphson version of the MIDAS model. As shown in Table
6, the Bayesian version performs better.
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Panel III of the table compares the MIDAS model and the other models presented
in Table 6. The advantage of the preferred specification of the MIDAS is evident.'”
It should be mentioned that in the period tested in this table, the statistical model
did not include any macroeconomic variables as part of the concept that differentiates
this model as a statistical model that estimates each of the main components of the CPI
independently, from existing models in the Bank that investigate the aggregate CPI with
macroeconomic explanatory variables. Table 7 shows the improvement in the statistical
model’s performance in the later period due to the inclusion of some macroeconomic
variables such as the inflation expectations and the rent to house price ratio in the
model. The MIDAS forecast has a significantly smaller error than the BVAR model and
does better than the AR model, although not significantly. It does not do better than
the econometric model or the average forecast of the outside forecasters.

4.4 Two months ahead forecast

We compare the MIDAS forecasting properties with those of the other models, for 2-
months-ahead forecasts. The results are presented in Tables 9 and 10. The MIDAS
preforms significantly better that the statistical model, better, but significantly, than
the AR equation and the econometric model, but the forecasters’ average outperforms
the MIDAS’ forecasts.

Table 9: RMSFE and MAFE for alternative models, out-of-sample forecast, two months
ahead, 2008.1-2010.9

Model RMSFE | MAFE
Statistical model 42 .35
AR equation .46 .35
Econometric model .46 .35
Forecasters average .24 18
MIDAS - Newton Raphson .28 .22
MIDAS - Beta mixture .26 .21

"Both the uniform specification and the monthly specification of the MIDAS equation perform sig-
nificantly better that the statistical model.
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Table 10: Test for significance of improvement in RMSFE, 2 months ahead forecast,
2008.1-2010.9.

| | Test value | Probability |
Ho: MIDAS* on the 17* is better than other models
Statistical model -1.68 0.10
AR model -0.41 0.68
Econometric model -0.38 0.72
Forecasters average 3.02 0.00
* In this table we refer to MIDAS estimated using the Newton Raphson method.

5 Concluding Remarks

The paper offers an additional method for forecasting short-term inflation, in particular
forecasting the one-month-ahead change in the CPI. We use the approach suggested
by Ghysels, Santa-Clara and Valkanov (2002), and followed by many others, known as
MIDAS - MlIxed DAta Sampling - which allows us to mix data of different frequencies
in a relatively simple manner in terms of specification and estimation. We estimate a
monthly model which incorporates daily data for the exchange rate and the interest rate,
market-based inflation expectations and commodity price indices.

Our results show that the MIDAS model, incorporating daily explanatory variables
with Beta-distributed lags of varying lengths, improves the forecasting performance as
measured by the RMSFE and MAFE, relative to a benchmark monthly average model.
We also find that the preferred timing to perform the forecast is in the third week of the
forecast month. The first two weeks of daily data and information about the previous
month’s CPI, both contribute to the improvement of the forecast accuracy. The addition
of the two last weeks of the month does not contribute to the performance of the model.

Comparing our results with those of other available monthly models in the Bank
of Israel, we find that the MIDAS model performs as well as some of the models and
significantly better than others. The model we present joins the suite of monthly models
currently in use in the Research Department of the Bank of Israel, and as such is expected
to contribute to our ability to understand the inflation environment and project its short-
term development as part of the framework for conducting monetary policy.

Several further extensions of this model are possible. One extension is to estimate
each of the CPI's major components separately, using MIDAS for the particular com-
ponents, such as energy or food that may have higher dependence on the commodity
indices, and complementing that with macro-financial data such as the interest rates and
inflation expectations for a measure of "core" inflation. Factor analysis in the model (as
suggested by Andreou, E., E. Ghysels and A. Kourtellos, 2010b and by Modugno, 2011)
is also an interesting avenue to explore.
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6 Appendix

Table A.1: Regression coefficients (estimated simultaneously with the Beta parameters),
for the CPI seasonally adjusted rate

1 2 3
Coeft. Coeft. Coeft.
(std. error) (std. error) (std. error)
dp(-1) 0.24 0.22 0.24
(0.07) (0.07) (0.07)
Effective nominal 2.44 2.44 2.44
exchange rate (0.47) (0.48) (0.47)
Dollar exchange 1.94 2.09 1.97
rate * contract ratio (0.53) (0.55) (0.54)
Fuel price ($) 0.23 0.18 0.22
(0.07) (0.07) (0.08)
Inflation 0.10 0.10 0.10
expectations (0.02) (0.02) (0.02)
Bloomberg Food 0.08
index (0.22)
Agricultural 0.72
commodities index (0.29)
CRB index 0.11
(0.40)
Bol interest rate -0.01 -0.02 -0.01
(0.01) (0.01) (0.01)
Seas. dummies and
holiday shift NO NO NO
Adjusted R 0.50 0.53 0.49
RMSE in sample 0.0028 0.0028 0.0028
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Table A.2: The posterior proabailities of the Beta distribution parameters

NER
Lag length | Posterior prob. s (std) m (std) 0, 0,
60 63.6 7.2(1.9) 0.6 (0.1) 3.9 3.3
45 26.0 6.3 (1.7) 0.5(0.1) 2.8 3.4
55 8.2 9.2 (5.5) 0.8 (0.0) 7.3 1.9
50 2.2 3.6 (3.8) 0.9 (0.0) 3.1 0.6

DOL
Lag length | Posterior prob. s (std) m (std) 0; 6,
45 60.2 6.7 (2.0) 0.4 (0.2) 2.8 3.9
60 354 8.8 (2.6) 0.5(0.1) 4.7 4.1
55 4.4 4.4 4.5 0.9 (0.1) 3.9 0.5

FUEL
Lag length | Posterior prob. s (std) m (std) 0; 6,
120 56 9.7(2.1) 0.6 (0.1) 6.0 3.8
50 21 9.9 (2.1) 0.7 (0.1) 6.5 3.4
40 13 9.4 (2.0) 0.6 (0.2) 54 4.0
110 7 3.9(0.8) 0.8 (0.0) 10.2 2.7
90 3 3.5(0.5) 0.5 (0.0) 6.3 6.1

INF E
Lag length | Posterior prob. s (std) m (std) 0; 6,
30 51.2 3.8(1.5) 0.4 (0.1) 1.4 2.4
15 26.0 11.4(1.0) | 0.4(0.1) 4.4 7.1
25 22.6 3.4 (0.6) 0.6 (0.1) 2.2 1.2
20 0.2 0.8 () 0.9 () 0.7 0.1

AGR
Lag length | Posterior prob. s (std) m (std) 0; 6,
70 73.0 9.1(2.2) 0.6 (0.1) 5.8 3.2
130 16.6 11.1 (2.1) | 0.6(0.0) 6.7 4.4
120 6.2 12.7(3.7) | 0.7(0.0) 8.2 4.5
100 2.4 7.8 (4.4) 0.8 (0.0) 6.2 1.6
80 1.0 8.2(0.1) 0.3 (0.0) 2.6 5.7
11 0.8 9.2(3.9) 0.7 (0.0) 6.7 2.5
NER=Effective exchange rate; DOL=Dollar/Shekel exchange rate; FUEL=Fuel prices
INF E=Inflation expectations; AGR=Agricultural commodities' price index.
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