# Make America Great: Long-Run Impacts of Short-Run Public Investment

Alexandr Kopytov and Haotian Xiang

The Wharton School

May 9, 2018





The roads and sidewalks, airports and bridges, are perfect in Dubai. Everything looks clean & strong. In U.S., everything is falling apart!





Investing in our infrastructure is about more than creating good jobs: it's about maintaining our status as the world's economic superpower.

```
RETWEETS LIKES
598 1,335
7.06 PM - 30 Nov 2015
4 184 5 568 0 1.3K
```



- ► Larry Summers: "The issue now is not whether the US should invest [in infrastructure] more but what the policy framework should be."
- ▶ Ben Bernanke: "I would think ... that infrastructure spending that improves our roads, our bridges, our schools, and ... would probably be the highest-return fiscal actions in terms of getting higher growth."
- Paul Krugman: "Infrastructure please."
- ➤ Joseph Stiglitz: "Infrastructure alone could absorb trillions of dollars in investment, not only true in the developing world, but also in the US, which has underinvested in its core infrastructure for decades."

### Motivation

- ► One of the few consensuses: A large-scale short-run government investment (GI) program
- Crucial to understand economic consequences produced by a large transitory GI shock
- ► Current macro frameworks: Consider small GI shocks in (almost) linear RBC models (Baxter and King, 1993; Leeper et al., 2010)
- Is there non-linearity?

### Motivation

Facts: Interstate Highway Construction around 1960s



### Overview

- We construct a RBC model with two stable steady states (s.s.)
  - Multiplicity arises because public capital complements private choice
  - ► Small shocks have temporary outcomes, while large ones can lead to steady state transitions
  - Rare switches across steady states can generate medium term cycles as in the data
- Apply our model to two case studies:
  - ► Can the large GI in the 1960s explain S-shaped dynamics of the US economy?
  - ► Can a large GI expansion trigger a recovery from the Great Recession?

#### Literature Review

- RBC models with transitory shock to GI
  - Baxter and King (1993), Leeper, Walker and Yang (2010)
- Endogenous growth models with permanent change in GI
  - ▶ Barro (1990), Futagami, Morita and Shibata (1993), Eicher and Turnovsky (2000)
- Empirical analysis of GI
  - Public capital elasticity: Aschauer (1989), Bom and Ligthart (2013)
  - Nonlinear impact of GI: Fernald (1999), Candelon, Colletaz and Hurlin (2013)
  - Multiplier papers: Perotti (2004), Auerbach and Gorodnichenko (2012), Ilzetzki, Mendoza and Vegh (2013)
- RBC models with multiple steady states
  - Schaal and Taschereau-Dumouchel (2015), Cai (2016)
- Medium term fluctuations
  - ► Comin and Gertler (2006), Anzoategui, Comin, Gertler, Martinez (2017)

I. Model

### Households

► Household with GHH preference subject to distortionary income tax and lump sum tax (transfers):

$$\max \mathbb{E} \sum_{t} \beta^{t} \frac{\left(C_{t} - \frac{L_{t}^{1+\nu}}{1+\nu}\right)^{1-\gamma}}{1-\gamma}$$
s.t.
$$C_{t} = (1-\tau)(W_{t}L_{t} + R_{t}K_{t} + \Pi_{t}) - I_{t} - T_{t}$$

$$K_{t+1} = (1-\delta_{k})K_{t} + I_{t}$$

#### **Firms**

▶ A continuum of short-lived firms produce under C-D technology subject to non-convex technology choice  $u \in \{H, L\}$ :

$$\begin{split} \pi &= \max\{\pi_H, \pi_L\} \\ \text{where} \\ \pi_H &= \max_{k,l} \underbrace{A I^{\theta_I} k^{\theta_k} (K^G)^{\alpha} \omega - W I - R k - f}_{\text{high (H) utilization}} \\ \pi_L &= \max_{k,l} \underbrace{A I^{\theta_I} k^{\theta_k} (K^G)^{\alpha} - W I - R k}_{\text{low (L) utilization}} \end{split}$$

- ► A is aggregate shock:  $\log A_{t+1} = \rho_A \log A_t + \sigma_A \epsilon_{t+1}^A$ ,  $\epsilon^A \sim N(0,1)$
- ▶ Define  $\Delta \pi = \pi_H \pi_L$ . Firm chooses H when  $\Delta \pi \geq 0$



### Fiscal Rule

▶ Law of motion of public capital:

$$K_{t+1}^{G} = (1 - \delta_g)K_t^{G} + G_t^{I}$$

where GI/output ratio  $g_t^I \equiv G_t^I/Y_t$  follows AR(1):

$$\mathbf{g}_{t+1}^I = (1 - \rho_{\mathbf{g}})\bar{\mathbf{g}}^I + \rho_{\mathbf{g}}\mathbf{g}_t^I + \sigma_{\mathbf{g}}\epsilon_{t+1}^{\mathbf{g}}, \ \epsilon^{\mathbf{g}} \sim \mathit{N}(0,1)$$

Gov consumes a given fraction of output:

$$\frac{G_t^C}{Y_t} = \bar{g}^C$$

► Financing:

$$G_t^I + G_t^C = \tau Y_t + T_t$$



### **Mechanisms**

- ▶ From public capital to private capital  $K^G \uparrow \Rightarrow K, L, Y \uparrow \Rightarrow K^G \uparrow$ 
  - ▶ (1) Complementarity between private factors, (K, L), and public capital,  $K^G$ , in Cobb-Douglas production function
  - ▶ (2) GI proportional to output
- ▶ From capital accumulation  $K, K^G \uparrow$  to technology adoption
  - ▶ (3) A non-convex adoption cost

### Characterization

#### Multiple Steady States

- ▶ Denote fraction of H firms as  $m \in [0, 1]$
- lacktriangle Define  $\Delta\Pi(m^{ss})$  as  $\Delta\pi(m^{ss})$  evaluated at steady state with  $m=m^{ss}$

### Proposition

The model has two stable deterministic steady states  $m^{ss} \in \{0,1\}$  if i)  $\Delta \Pi(m^{ss})$  is increasing in  $m^{ss}$  and ii)  $\Delta \Pi(1) > 0 > \Delta \Pi(0)$ .

- ▶ i) requires moderate social IRS:  $1 \theta_k \frac{\theta_l}{1+\nu} > \alpha > \frac{\nu}{1+\nu}\theta_l$
- ii) non-convex cost creates no deviation incentive and supports two stable steady states

### Characterization

#### Multiple Steady States



II. Calibration and Assessments

## Parametrization I

| Parameter                 | Value                                                    | Source                               |  |  |
|---------------------------|----------------------------------------------------------|--------------------------------------|--|--|
| Preferences               |                                                          |                                      |  |  |
| Risk aversion             | $\gamma = 1.0$                                           | Log utility                          |  |  |
| Labor elasticity          | $1/\nu = 3.33$                                           | = 3.33 Higher end of macro estimates |  |  |
| Time discounting          | $\beta = 0.95^{1/4} \qquad \qquad 0.95 \text{ annually}$ |                                      |  |  |
| Production function       |                                                          |                                      |  |  |
| Labor share               | $\theta_{I} = 0.56$                                      | Basu and Fernald (1997)              |  |  |
| Capital share             | $\theta_k = 0.24$                                        | Basu and Fernald (1997)              |  |  |
| Public capital elasticity | $\alpha = 0.15$                                          | Bom and Ligthart (2013)              |  |  |
| Depreciation rates        |                                                          |                                      |  |  |
| Private capital           | $\delta_k = 1 - 0.9^{1/4}$                               | 10% annually                         |  |  |
| Public capital            | $\delta_{g} = 1 - 0.92^{1/4}$                            | 8% annually, Leeper et al (2010)     |  |  |
| Fiscal Spending Rule      |                                                          |                                      |  |  |
| Government consumption    | $\bar{g}^{C} = 0.235$                                    | Postwar US data                      |  |  |
| Transfers                 | $\bar{z} = 0.060$                                        | Postwar US data                      |  |  |
| Government investment     | $\bar{g}^I = 0.041$                                      | Postwar US data                      |  |  |

## Parameterization II

| Parameter                    | Value               | Source                         |
|------------------------------|---------------------|--------------------------------|
| GI shock                     |                     |                                |
| Persistence                  | $\rho_{g} = 0.967$  | Postwar US data                |
| Standard deviation of shocks | $\sigma_g = 0.0011$ | Postwar US data                |
| TFP                          |                     |                                |
| Persistence                  | $\rho_{A} = 0.94$   | Output persistence             |
| Standard deviation of shocks | $\sigma_A = 0.008$  | Output volatility              |
| Technology adoption          |                     |                                |
| Fixed cost                   | f = 0.0051          | Frequency of transitions       |
| Scaling up parameter         | $\omega=1.02$       | Distance between steady states |

### IRFs: GI Shocks at s.s. L



## IRFs: TFP Shocks at s.s. L



# Medium-Term Cycles

|             | Medium-term<br>cycle, 0-200 qtr |                          | High frequency component, 0-32 qtr |                     | Medium frequency component, 32-200 qtr |                      |
|-------------|---------------------------------|--------------------------|------------------------------------|---------------------|----------------------------------------|----------------------|
|             | Data                            | Model                    | Data                               | Model               | Data                                   | Model                |
| Output      | 4.23                            | <b>4.4</b> 6 (2.99,6.46) | 2.30                               | 2.05<br>(1.59,2.61) | 3.61                                   | 3.91<br>(2.28,6.05)  |
| Consumption | 3.34                            | 3.62<br>(2.36,5.37)      | 1.30                               | 1.43<br>(1.11,1.80) | 3.12                                   | 3.28<br>(1.92,5.20)  |
| Hours       | 3.75                            | 3.42<br>(2.31,4.87)      | 1.78                               | 1.57<br>(1.23,1.97) | 3.41                                   | 3.00<br>(1.76,4.59)  |
| Investment  | 12.35                           | 10.61<br>(7.24,15.64)    | 8.05                               | 5.86<br>(4.33,7.92) | 9.35                                   | 8.65<br>(5.09,14.24) |
| TFP         | 2.46                            | 2.17<br>(1.57,2.44)      | 1.52                               | 1.16<br>(0.93,1.44) | 1.95                                   | 1.80<br>(1.10,2.65)  |

► Infrequent switches between steady states generate medium frequency fluctuations (Comin and Gertler, 2006)

IV. Case Studies

| Can GI shocks in the 1960s explain S-dynamics of the macroeconomy? |
|--------------------------------------------------------------------|
|                                                                    |

## 1960s Highway Construction

#### Transition Paths

- Extract GI shocks from the data: 1960Q1 1972Q4
- Productivity shocks backed out through the residual approach (measured TFP)



#### Investment, log deviation



#### Mass of H firms



# 1960s Highway Construction

Decomposition: Roles of TFP and GI Shocks





"Another republican president, Dwight D. Eisenhower, initiated the last truly great national infrastructure program – the building of the interstate highway system. The time has come for a new program of national rebuilding."

- Donald J. Trump's Speech to the Congress, Feb 28, 2017

Would a large GI shock have helped the US economy to recover from the crisis?

## The Slow Recovery

#### Transition Paths

- Extract GI shocks from the data: 2007Q4 2017Q2.
- Productivity shocks backed out through the residual approach (measured TFP)



## The Slow Recovery

#### Decomposition: Roles of TFP and GI Shocks

Yellow lines: a counterfactual increase in GI starting at 2009Q3 of roughly 1 trillion 2009 dollars



### Conclusion

- ► We document S-shaped dynamics of US macroeconomy around the construction of the Interstate Highway System in the 1960s
- We built an RBC model with multiple s.s. to capture such a non-linear effect of a large GI
- In a "depressed" economy, a temporary GI program can create a permanent scale-up
- ► Infrequent switches between steady states can generate medium term cycles as in the postwar US data
- Exogenous productivity shocks play crucial roles

### Gross Macro Series





# Full Sample





## A Lower Depreciation Rate

- ► Can a plain vanilla RBC model with a lower depreciation rate rationalize series around 1960s?
- ▶ Set the annual depreciation rate of public capital to 5%.







## Role of Financing

- $\zeta \in [0,1]$  fraction of GI shock is financed through tax rate change
- An increase in τ can overturn transition

