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1 Introduction

Inflation expectations are a pivotal intermediate target for central banks to achieve
their inflation objective. While short-term inflation expectations are affected by eco-
nomic conditions, longer-term inflation expectations reveal the credibility of central
bank’s inflation objective. Inflation targeting (IT) underscores this link by announcing
an explicit numerical value for the inflation objective. Looking at real-world target
formulations, the degree of heterogeneity of target formulations is striking. While some
countries provide a point target, others define a range for inflation outcomes that the
central bank intends to achieve. Hybrid solutions are also widespread, including a tar-
get range with emphasis on a focal point or point targets with a numerically defined
tolerance band around it. Surprisingly little is known about the anchoring properties
of alternative inflation target formulations.

This paper investigates empirically whether inflation target formulations matter for
the anchoring of medium- to long-term inflation expectations. We use data from an
unbalanced panel of 29 countries, covering the period from 2005m4 to 2020m4. To
quantify the degree of anchoring, we propose a measure based on the cross-sectional
distribution of private sector inflation point forecasts based on Consensus data for
horizons of two to six years ahead. We summarize beliefs about inflation outcomes
using a skew extended version of the t-distribution (Jones and Faddy, 2003), which we
fit to the data using simulated method of moments estimation. The main measure of
anchoring is given by the density of inflation forecasts falling within a tight symmetric
interval around the midpoint of the inflation target. It is thus a (subjective) belief-
based, probability measure of being on target. The density of forecasters’ beliefs
below and above the edges of the tight interval around target provide two further
indices, (i) disanchoring due to low inflation and (ii) disanchoring due to high inflation,
which capture the degree of asymmetry in the distribution across forecasters’ ”best
predictions”.

We document time-variation and cross-country variation in disagreement and asym-
metry, implying significant variation in the tails of the cross-sectional distribution of
long-term inflation forecasts. To motivate why asymmetry in the inflation outlook
matters, we apply a framework developed by Kilian and Manganelli (2008) that gen-
eralizes monetary policy rules to the case of potentially asymmetric and non-quadratic
central bank preferences. The resulting optimal forward looking policy rule contains a
weighting of upside and downside risks to the inflation outlook, consistent with the pro-
posed empirical anchoring measures. By emphasizing the balance of risks to inflation,
the approach reconciles models based on expected utility with the risk management
approach to central banking (Greenspan, 2004; Draghi, 2016; Powell, 2020).

We run a number of empirical tests to evaluate the performance of alternative target
formulations. Quantitative targets for monetary policy are grouped in four categories:
(i) no precise numerical target (but a quantitative definition of price stability), (ii) a
target range, (iii) a hybrid target, i.e. a target range with a focal point or a point target
with a tolerance band, and (iv) a point target. In our main specification, we find that
a numerical target per se is not necessarily superior to a quantitative definition of price
stability. However, a numerical target formulation with emphasis on a numerical point
target, either as inflation point target or in a hybrid strategy, improves the anchoring of
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long-term inflation expectations. The probability-based measure is significantly more
centered on target at all forecast horizons. Pure ranges, in contrast, feature weaker
anchoring. When we compare only numerical target types, we find that hybrid target
formulations are raising the probability measure of being on target by an economically
significant amount and to a similar extent as inflation point targets. Are gains from
better inflation anchoring symmetric around the inflation objective? Looking at the
measures of disanchoring, we find that this is not the case. Forecasters’ beliefs get not
only compressed, but also shift: Lower risks of above target inflation are simultaneously
associated with slightly more pronounced risk of below target inflation.

Further, we test the credibility of a target conditional on the inflation performance.
Following Neuenkirch and Tillmann (2014), we use the gap of past inflation realizations
from target over the past 60 months to differentiate periods of sustained undershooting
from periods of sustained overshooting. We find that credibility losses due to low infla-
tion impair anchoring, while above target inflation has no effect on the main measure
of anchoring. These findings extend the results of Ehrmann (2015) to the longer-term
horizon. Additionally, we find that credibility losses have strong effects on the shape
of the cross-sectional distribution of forecasts in the expected direction. While past
undershooting raises disanchoring due to low inflation and dampens disanchoring due
to high inflation, overshooting affects the distribution in the opposite way. How is it
possible to change shape while keeping the central tendency of the distribution across
inflation point forecasts more or less stable? Intuitively, the results are generated by
swings in the tails of the skew t-distribution, that are related in a systematic way
to the credibility indicator. In economic terms, this implies that at times very high
inflation rates or deflationary tendencies fall within the set of forecasters’ beliefs, while
the mean might not necessarily be affected.

In a final step, the credibility loss indicator is interacted with the classification
of target types. This specification helps to answer the question whether one target
formulation is more efficient than another to combat the risk of disanchoring due
to either high or low inflation. We conclude that no target type fares significantly
better in improving overall anchoring conditional on the credibility loss term. At
the same time, we find differences to what extend the shape of the distribution is
affected by undershooting: inflation point targets fare best regarding shape-stability
conditional on persistent undershooting and overshooting. They dampen the increase
in the measure for disanchoring due to low inflation during periods of undershooting,
while also significantly dampening the rise in the measure of disanchoring due to high
inflation during periods of overshooting. Hybrid target formulations also dampen
the shift in the cross-sectional distribution of forecasts, but to a much lower extend
compared to pure point targets.

From a theoretical standpoint, it is a priori not clear how target formulation affect
the degree of anchoring, or the balance of risks to inflation. One strand of papers argues
that a range target or tolerance band gives more flexibility to central bankers to pursue
secondary objectives, putting the inflation objective at a lower priority (Svensson,
1997b; Orphanides et al., 2000). Such theories predict that lower probability mass is
located in close proximity around target in the presence of a target range or tolerance
band. Contesting this view, another strand of papers argues that inflation rates are
practically never aligned with a point target, making such a target less credible for
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markets. Announcing a target range or tolerance band, thus, increases central bank
credibility and promotes anchoring (Demertzis and Viegi, 2009; Andersson and Jonung,
2017). Stein (1989) takes this argument one step further, claiming that any clear
announcement of policy objectives is interpreted as cheap talk due to an inherent
time-inconsistency problem. His theory would favor vague quantitative definitions of
price stability over an explicit numerical target. The model’s prediction is that any
numerical announcement is contraproductive for anchoring. Confronted with opposing
theoretical predictions on the relationship between target formulations and anchoring,
the question is empirical in nature.

Our empirical results have three important implications for this strand of literature.
First, the weak anchoring of inflation expectations in the presence of pure target ranges
is consistent with approaches suggesting that pure ranges are interpreted as zones
where monetary policy is less active. Second, our findings are in line with predictions
of the flexibility view, i.e. tolerance bands provide more room for interpretation of
the inflation target during periods of sustained target deviations than point targets.
Third, a vague target formulation which is based on a mere definition of price stability
is dominated by a target type with reference to an explicit point target or focal point,
indicating that central banks can reveal policy objectives credibly even in the presence
of time-inconsistent objectives.

The paper is further related to a large empirical literature on the measurement of
expectation anchoring. While there exists no widely-agreed definition of well-anchored
inflation expectations, Afrouzi, Kumar, Coibion, and Gorodnichenko (2015) list five
criteria that are recurrent in empirical tests of anchoring: (i) average beliefs being
close to target, (ii) beliefs that are not too dispersed across agents, (iii) confidence in
the belief, thus little (subjective) uncertainty about inflation projections, (iv) forecast
revisions should be small, notably over longer horizons, (v) little co-movement between
long-run and short-run inflation expectations. One contribution of this paper is to
extend this list with a sixth criterion, emphasizing that more symmetric distributions
are desirable from the perspective of a risk-averse central banker.

There is a large body of papers focusing on variants of criterium (v), also referred
to as a pass-through regression (Jochmann, Koop, and Potter, 2010; Pooter et al.,
2014; Lyziak and Paloviita, 2017; Buono and Formai, 2018). In a related approach,
anchoring is measured by the extent to which long-term inflation expectations obtained
from breakeven inflation rates respond to macroeconomic news (Gürkaynak, Levin,
and Swanson, 2010; Beechey, Johannsen, and Levin, 2011; Bauer, 2015; Hachula and
Nautz, 2018; Speck, 2017). It should be noted that it is well possible that long-term
inflation expectations respond little to news, while being distant to the announced
inflation objective of the central bank in levels, thus questioning the credibility of the
target. This renders criterion (v) less suitable for the assessment of differential effects
of target formulations.

Papers that focus on the level of long-term inflation expectations are more closely re-
lated to the approach taken here. Mehrotra and Yetman (2018) use a three-dimensional
panel dataset, using the mean of long-run Consensus forecasts at all available forecast
horizons, to estimate the perceived long-run anchor, which they then compare with
alternative measures of long-term inflation projections. Moessner and Takats (2020)

3



consider the distance of Consensus long-term inflation expectations from the inflation
target as the anchoring property, without considering the differential effects of tar-
get types on anchoring. Anchoring as defined in Grishchenko, Mouabbi, and Renne
(2019) comes closest to the here proposed anchoring measure. They construct con-
ditional density inflation forecasts for the US and the Euro area from the survey of
professional forecasters by fitting generalized beta distributions to bins of inflation
outcomes provided in these surveys. While their measure is very similar to ours, an
important difference is that our cross-sectional measure does not account for subjective
forecast uncertainty, given that Consensus only collects point forecasts containing the
best projection of each panelist. This has advantages and disadvantages at the same
time. While it would be informative to consider all outcomes with positive probability
mass from the sample of professional forecasters, it is not clear how density functions
relate to the best projection, such that there is an interest in examining the cross-
section of point forecasts only (Engelberg, Manski, and Williams, 2009; Clements,
2014).

This paper contributes primarily to the literature on the effects of target formula-
tions on inflation outcomes and inflation expectations. Fatas, Mihov, and Rose (2007)
document over a sample period of 1960 to 2000 and a large set of 42 countries that
a quantitative definition of the inflation objective lowers inflation outcomes. Crowe
(2010) finds in a sample of 11 countries that the introduction of IT reduces the fore-
cast error of private sector forecasts. He concludes that this results from increased
transparency about central bank objectives. Levin, Natalucci, and Piger (2004) look
at pass-through of current inflation to long-term expectations in a set of 12 advanced
economies, finding that the IT framework has helped to better anchor medium- to
longer-run inflation expectation. Davis (2014) comes to the same conclusion in a
larger set of 36 countries, considering the pass-through of shocks to inflation, inflation
expectations and oil prices. Gürkaynak, Levin, and Swanson (2010) compare market-
based inflation expectations of three IT countries (UK, Sweden, Canada) and the US,
noting that far-ahead forward rates respond more to economic news and are more
volatile in the US, suggesting higher anchoring in IT countries. Bundick and Smith
(2018) conduct an event study around the introduction of numerical point targets in
the US and Japan, finding that anchoring improved in the US but not in Japan.

There are two empirical papers differentiating between inflation target formula-
tions, thus related to our main research question. Castelnuovo, Nicoletti-Altimari,
and Rodriguez-Palenzuela (2003) document in a sample of 15 industrial countries that
the adoption of a quantitative inflation aim improves anchoring. However, they do
not find any significant difference between countries adopting a range target versus
a point target. An important difference to our work is the sample period. While
their data covers the period 1990-2002, our sample only starts in 2005 due to data
availability on moments of the cross-sectional distribution, hence showing no over-
lap. Ehrmann (2020), work developed in parallel, distinguishes between range targets,
point targets, and point targets with tolerance bands in a sample of 20 countries. He
finds that pass-through is weaker for countries that have defined a target range or
tolerance band for inflation, implying weaker anchoring for pure point targets. His
work focusses on a shorter forecast horizon of one-and-a-half years. The differences to
our findings might result from the nature of the underlying test. As argued before, a
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lower pass-through coefficient for target ranges is not necessarily inconsistent with less
probability of cross-sectional point forecasts around target.1 We therefore consider his
findings as complementary to ours.

Finally, Cornand and M’baye (2018) run a learning-to-forecast laboratory experi-
ment, comparing the macroeconomic outcomes within a New Keyensian model under
two inflation target formulations, a point target and a target range. The announcement
of a point target is associated with faster convergence of participants’ expectations to
target, broadly consistent with out empirical finding.

The paper is organized as follows. Section 2 presents a model of central bank
inflation risk management to motivation the proposed anchoring measures. Section 3
presents the data and describes how we estimate continuous density functions of cross-
sectional point forecasts. Section 4 contains the empirical analysis while Section 5
examines the robustness of the results. Section 6 concludes.

2 Measures of expectations anchoring accounting

for asymmetry

This section derives measures of inflation expectations anchoring consistent with po-
tentially asymmetric central bank preferences. We closely follow Kilian and Manganelli
(2008) in the exposition. The optimal policy rule features a balancing of upside and
downside risks to inflation. Based on Svensson’s (1997a) idea of inflation forecast
targeting, forward-looking risk measures are derived which serve as blue print for the
empirical anchoring measures computed from continuous density functions estimated
in Section 3 from a cross-sectional panel of professional forecasters.

2.1 Inflation risk management model

Let us first consider the seminal case of an expected utility maximizing central banker’s
problem of optimal monetary policy under discretion, where the central bank seeks to
set a sequence of nominal interest rates {it}∞t=0 that minimizes the objective function:

min
{it}

Et

∞X
τ=0

δτLt+τ (1)

Various proposals have been made for specifying the loss function Lt. The seminal
linear-quadratic specification takes the form

Lt =
1

2
(πt−π∗)2 + λ

1

2
(yt)

2,

where πt denotes realized inflation, π
∗ is the inflation target and yt an output gap

measure. The parameter λ then captures to what extend the central bank cares about
the output objective. Substituting in a linear Phillips curve and taking the first order

1Other differences between the two studies constitute a slightly different country coverage and
sample period.
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condition of the minimization problem gives rise to an implied interest rate rule under
optimal policy that closely resembles the Taylor rule (Svensson, 1997b; Clarida, Gaĺı,
and Gertler, 1999).

Kilian and Manganelli (2008) propose a generalization to the problem of optimal
policy toward asymmetric and risk-averse preferences.2 They formalize ’upside risk’
and ’downside risk’ to price stability as situations in which a central banker is con-
cerned about inflation realizations below a certain threshold, πt < π < π∗ or above a
certain threshold πt > π̄ > π∗. The resulting loss function takes the form

Lt =
h
aI(πt < π)(π−πt)

γLπ + (1−a)I(πt > π̄)(πt−π̄)γ
H
π

i
,

+ λ
h
bI(yt < y)(y−yt)

γLy + (1−b)I(yt > ȳ)(yt−ȳ)γ
H
y

i
with 0 ≤ a, b ≤ 1 and λ ≥ 0.

The parameter λ captures, as before, the weight for the output objective. A set
of indicator functions, denoted I(·), take the value of one if the condition inside the
brace is fulfilled and zero otherwise. Parameters a and b then govern the degree
of asymmetry, while γL(·) and γ

H
(·) determine the risk aversion of the central banker to

inflation and output gap realizations. This specification nests the possibility of a target
zone of inflation, as losses occur only from inflation realisations outside the interval
[π, π̄]. Note that this loss function also nests the standard quadratic and symmetric
loss function with a point target for inflation stated above.3

To simplify the expression, let us ignore the output objective and set λ = 0. In
expectation, the loss function can be rewritten as

E(Lt+h) = a

Z π

−∞
(π−πet )

γHπ dFπet (π
e
t ) + (1−a)

Z ∞

π̄

(πet −π̄)γ
L
π dFπe(π

e
t ), (2)

where Let Fπe denote the probability density function over expected inflation real-
izations. For notational convenience, let us denote inflation risk measures under the
distribtion of inflation expectations Fπe as disanchoring due to low inflation (DAL)
and disanchoring due to high inflation (DAH), respectively

DALγLπ (Fπe) =

Z π

−∞
(π−πe)γ

L
π dFπe(π

e) (3)

DAHγHπ (Fπe) =

Z ∞

π̄

(πe−π̄)γ
H
π dFπe(π

e) (4)

Kilian and Manganelli (2008) define the general risk management problem as follows:

Definition 1. [Risk management problem] Let F
(1)
πe and F

(2)
πe denote two alternative

probability distributions for inflation expectations. Then F
(1)
πe is weakly preferred over

2 Ruge-Murcia (2003) and Cukierman and Muscatelli (2008) also analyse optimal policy under
asymmetric preferences using a linex function to characterize central bank losses.

3This is the case under the parameterization a = b = 1/2 (symmetry), quadratic losses γL(·) =

γH(·) = 2, a midpoint for inflation objective π = π̄ = π
∗, as well as deviations from output from the

natural level standardized to zero, y = ȳ = 0.
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F
(2)
πe if | DALγLπ (F

(1)
πe ) |≤| DALγLπ (F

(2)
πe ) | and DAHγHπ (F

(1)
πe ) ≤ DAHγHπ (F

(2)
πe ). If this

condition does not hold, the central banker faces a risk management problem.

In words, the central banker needs to trade-off downside risk to inflation against up-
side risk to inflation. Without additional information about central bank preferences,
it is impossible to characterize a solution to this problem. This requires the existance
of a central bank utility function over alternative probability density functions, giving
rise to a risk management model.

Definition 2. [Risk management model] A central banker’s preferences satisfy a risk
management model if and only if there is a real valued function U in risks such that
for all relevant distributions F

(1)
πe and F

(2)
πe , F

(1)
πe is preferred over F

(2)
πe if and only if

U(DALγLπ (F
(1)
πe ), DAHγHπ (F

(1)
πe )) > U

�
DALγLπ (F

(2)
πe ), DAHγHπ (F

(2)
πe )
�
.

From substituting equations (2), (3) and (4) into the central bank’s optimization
problem (1) and deriving the first order condition, Kilian and Manganelli (2008) obtain
an implicit nonlinear, potentially asymmetric interest rate rule:

∂EtLt(πt)

∂it
=
∂Et(πt(it))

∂it

�
−aγLπ

Z π

−∞
(π−πt)

γHπ −1dFπt(πt)

+(1−a)γHπ

Z ∞

π̄

(πt−π̄)γ
H
π −1dFπt(πt)

�
= 0 (5)

The rules is a weighted average of measures of downside risk and upside risk to inflation,
where parameters a, γLπ and γ

H
π govern the response of the instrument to inflation risk.

Thus, a risk-averse central banker takes into account the entire distribution of possible
inflation outcomes and weights them according to her preferences.

2.2 Risk measures

Based on the optimal policy rule (5), we next derive measures of inflation risk, based
on continuous probability density functions, which are consistent with preferences
featuring risk aversion and potentially asymmetry. Further, we use the insights of
Svensson (1997a), who shows that inflation targeting can best be operationalized via
forecast targeting if the control lag of monetary policy is well understood. Then, the
loss function of the central banker, based on realized inflation in the standard case,
can be substituted by an intermediate loss function using inflation forecasts as inputs.

Five groups of candidate measures could in principle provide the basis for the an-
choring measures that account for the entire shape of possible future inflation out-
comes. First, density forecasts from macroeconometric models (Mitchell and Wallis,
2011). The disadvantage is that empirical model forecasts do not contain informa-
tion about the credibility of central bank inflation objective as perceived by economic
agents. Second, aggregated subjective probability forecasts as provided in the sur-
vey of professional forecasters (SPF). While the SPF provides a useful basis for the
measurement of inflation risk (Grishchenko, Mouabbi, and Renne, 2019), this data is
only available for the US and the Euro area. Third, central bank density forecasts for
inflation (Knüppel and Schultefrankenfeld, 2012). While central bank inflation density
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forecasts become increasingly available for a larger set of countries, cross-country com-
parability of inflation risk assessments remains a constraint in empirical work. Fourth,
option-implied inflation probability density functions that reflect the market assess-
ment of inflation risk (Kitsul and Wright, 2013). While the financial market-based
measures pose challenges with respect to the decomposition into inflation expecta-
tions, inflation risk premia and liquidity premia, they are also only available for a
limited set of countries with sufficiently well-developed derivatives markets. We are
going to focus, fifth, on the cross-sectional distribution of inflation point forecasts of
the private sector. This data is available for a large set of countries through Consensus,
directly comparable to each other, and measuring inflation expectations in real time.4

We do not interpret the density functions derived from the cross-section of point
forecasts as density forecasts, but rather as a summary of beliefs across agents. Macroe-
conomic models that depart from the assumption of rational expectations have shown
that dispersion in private sector inflation expectations provide relevant information
for monetary policy (Orphanides and Williams, 2005). A related, but subordinated
question is why professional forecasters disagree, hence giving rise to a cross-sectional
distribution of forecasts. The literature based on models with Bayesian learning finds
that the origin of disagreement can range from differences in private information sets
and opinion, i.e. priors or models (Patton and Timmermann, 2010), inattentiveness of
professional forecasters (Sims, 2003; Andrade and LeBihan, 2013), idiosyncratic uncer-
tainty (Lahiri and Sheng, 2010), or dispersion in the interpretation of news (Manzan,
2011). For our analysis, the source for disagreement is of secondary importance. What
matters is the relevance of dispersed beliefs for inflation outcomes and monetary policy
decision.

To gain further intuition, Fig. 1 illustrates possible cross-sectional distributions of
point forecasts with disagreement and skewness. Panel (a) focusses on disagreement.
While both distributions feature the same mean, the variance of cross-sectional point
forecasts differs, leading to a significant amount of beliefs concentrated in the tails of
the distribution. Panel (b) illustrates the symmetry of beliefs as captured by skewness
of the underlying beliefs. While positive skewness implies a concentration of beliefs at
high levels of inflation, negative skewness entails beliefs consistent with very low infla-
tion rates. Notably, the central banker with a risk management model as characterized
in definition (2) is unlikely to be indifferent between the four illustrative examples of
cross-sectional inflation point forecasts.

For the empirical analysis, we therefore propose three probability measures derived
from the cross-section of inflation point forecasts closely related to (3) and (4). Since
estimating the degree of risk aversion of each central bank is beyond the scope of
this paper, set γLπ = γHπ = 0. Further, let h denote the forecast horizon, and i the
country. We then obtain empirical measures of disanchoring due to low inflation and

4To the extent that Consensus forecasts are a collection of point forecasts, they are parallels with
projections of the members of the Federal Open Market Committe (FOMS) of the US Federal Reserve
(Gavin and Mandal, 2003; Romer and Romer, 2008).
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Figure 1: Illustrative distribution of inflation point forecasts

(a) Disagreement (b) Skewness

Note: Illustrative examples of parameterized skew t−distributions across inflation point forecasts, all featuring a mean
of 2. Panel (a) shows two symmetric distributions around a hypothetical target of 2 percent. The disagreement

measured as cross-sectional standard deviation of F (1)πe (light blue) is twice as large as the standard deviation of

F (2)πe (dark grey). Panel (b) shows two distributions with non-zero skewness in the cross-section. F (3)πe (light blue)

features negative skewness, whereas F (4)πe (dark grey) is positively skewed.

high inflation from the probability density across point forecasts as:

DALhit =

Z πi

−∞
dFπhit(π

h
it) (6)

DAHh
it =

Z ∞

π̄i

dFπhit(π
h
it) (7)

Complementing these two measures of disanchoring, we define our main measure of
anchoring as the cumulative density of point forecasts falling within a narrow interval
around the inflation objective

probT hit =

Z π̄i

πi

dFπhit(π
h
it) (8)

= 1−DALhit−DAHh
it.

3 Data

This section describes the classification of quantitative inflation targets and the ap-
proach of estimating continuous density functions to moments of the cross section of
inflation point forecasts from private sector survey data.
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3.1 Classification of quantitative inflation targets

We code the quantitative inflation targets of 29 countries. The sample of countries
is composed out of 12 advanced economies (AEs) and 17 emerging market economies
(EME).5 We follow Castelnuovo, Nicoletti-Altimari, and Rodriguez-Palenzuela (2003)
and define dummy variables for six categories: (i) no explicit announcement, (ii) a
quantitative definition of price stability, (iii) a range target for inflation, (iv) a range
target with focal point, (v) a point target with tolerance bands and (vi) an inflation
point target.

Some remarks on the coding of inflation targets are in order. First, given the nu-
anced definition of inflation objectives in practice, the boundaries of central bank
objectives defined as point targets versus range targets are not clear cut. We therefore
acknowledge that there might be controversial views about the classification of some
countries over time that we have chosen. Second, the objective is to collapse the variety
of target specifications into the essential informational content that the public is able
to understand in the context of noisy information and conflicting signals (Demertzis
and Viegi, 2008, 2009). Therefore, in the empirical analysis, we merge classification
categories (i) and (ii) into ’no numerical target’ and categories (iv) and (v) into ’hyprid
targets’. Third, we include also three central banks that never officially adopted infla-
tion targeting as a a framework for the conduct of monetary policy, namely the United
States, the Euro area and Switzerland. However, the inflation targets can be classified
while the policy framework seems mature enough to be be integrated in the empirical
analysis.

Tab. A.1 in the Appendix provides all details regarding our classification choices.
Fig. 2 gives a snap shot of inflation objectives as of April 2020, while Tab. 1 lists
summary statistics of the 29 countries covered in the analysis starting in April 2005.
A couple of observations stand out. Despite some heterogeneity, there is convergence
toward an inflation objective of two to three percent among central banks (Hammond,
2012). Second, there is significant cross-country variation with respect to the adoption
of a point target versus a target range and hybrid versions. However, the majority
of observations falls within the class of hybrid targets, which are dominated by point
targets with a tolerance band. Fig. A.1 and Fig. A.2 in the Appendix document that
there is also considerable intertemporal variation, as some central banks introduced or
abandoned tolerance bands and point targets as part of the evolution of their monetary
policy strategy. Examples include, but are not limited too, the cases of Sweden or New
Zealand. Sweden started out in early 1993 by adopting a point target of 2 percent
with a tolerance band of +/− 1 percent. In May 2010, the executive board of the
Rijksbank abandoned the tolerance band, only to reintroduce it under the name of a
variational band in September 2017. New Zealand operated with a range target from
1990 onwards, with explicit focus on the midpoint since September 2012 (Lewis and
McDermott, 2016).

5The sample of AEs cover Australia, Canada, Czech Republic, Euro area, Japan, New Zealand,
Norway, South Korea, Sweden, Switzerland, United Kingdom and United States. The sample of
EMEs contains Albania, Armenia, Chile, Colombia, Guatemala, Hungary, India, Israel, Mexico,
Peru, Poland, Philippines, Romania, Serbia, South Africa, Thailand and Turkey.
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Figure 2: Quantitative inflation targets

(a) AE sample (b) EME sample

Notes: Quantitative targets as of April 2020 of 17 AE countries (panel a) and 25 EME countries
(panel b). Switzerland and the United States are the only countries not classified as official inflation
targeters. Missing from the AE sample is the Euro area with an inflation objective of below, but
close to, 2 percent, which cannot be translated into a specific number without controversy.

Table 1: Summary statistics of inflation targets

mean sd min max groups obs
no IT 1.74 .37 1 2 3 71
IT(all) 2.5 .73 1 5 28 855
Inflation target classifications
Range target 2.35 .88 1.5 4.5 9 161
Range with focal point 2.2 .25 2 2.5 2 49
Point with tolerance band 2.74 .76 2 5 16 438
Point target 2.18 .36 1 3 8 207

Note. Summary statistics on the midpoint of the inflation objective for
target classifications. Tab. A.1 in the Appendix provides details on the
classification for each country in the sample.

3.2 Estimating distribution functions for anchoring measures

For the computation of inflation risk measures as defined in equations (6) to (8), we
estimate parametric density functions using sample moments of the cross-sectional
distribution of point forecasts from private sector forecasts collected by Consensus.

The survey is conducted across a wide range of countries. The survey covering
long-term forecasts is available at biannual frequency from October 1989 onwards
with surveys conducted typically in April and October over forecast horizons of h =
0, 1, 2, 3, 4, 5, 6−10 years. The survey frequency changed to quarterly in April 2014,
the survey then being conducted in January, April, July and October. The underlying
data characterizes fixed-event forecasts for specific calendar years. The forecast horizon
thus changes in every survey round. We apply a fixed-horizon transformation to the
data, extending the formula provided by Dovern, Fritsche, and Slacalek (2012) to a

11



multi-year horizon

x̂t+y·12|t =
k

y · 12
xt+k|t +

y · 12−k

y · 12
xt+y·12+k|t

with k ∈ {(y−1) · 12 + 1, (y−1) · 12 + 2, ..., (y−1) · 12 + 12} .

We cover fixed-horizon forecast from years y = 1, 2, 3, 4, 5 and 6, where the last series
is a weighted average out of inflation forecasts over the five year horizon and the 6 to
10 years horizon.

Let MPF hjit(x) denote the mean point forecast of panelist j in country i at time t
of realizations of variable x over the forecast horizon h. Unfortunately, the micro data
of all panelists mean point forecasts are not available from Consensus long-term fore-
casts.6 However, Consensus publishes four moments of the cross-sectional distribution
of long-term point forecasts as of April 2005, namely (i) the sample mean, (ii) the
sample standard deviation, (iii) the lowest and (iv) the highest mean point forecast of
the survey sample. To clarify the underlying data, let us denote the availabe data as
follows:

µhit = Et[MPF hit ] =
1

N

NX
j=1

MPF hjit (9)

σhit =

vuut 1

N −1

NX
j=1

(MPF hjit−µhit)
2 (10)

lowhit = min
�
MPF h1it, ...,MPF hNit

�
(11)

highhit = max
�
MPF h1it, ...,MPF hNit

�
(12)

Fig. 3 documents substantial cross-sectional disagreement and skewness over the
sample period. Plotted are the cross-country evolution of the median and percentiles
of disagreement, measured as the standard deviation across panelists, and skewness.
We measure skewness in country i in period t at horizon h by the following ratio

Shit =
(highhit−µhit)−(µhit−lowhit)

highhit−lowhit
. (13)

The ratio provides insights into the relative position of the mean with respect to
the two most extreme survey responses. When the ratio is high, skewness tends to
be positive, while skewness is low or negative if the ratio drops. Equation (13) is
inspired by quantile-based measures of skewness, for example Bowley’s robust measure
of skewness. However, given that we do not know the median or percentiles, it is just
an approximation to more conventional measures of skewness (Bowley, 1920). 7

Given the high amount of asymmetry reflected in Panel (b) of Fig. 3, we consider

6Consensus provides micro data for panelists participating in the monthly survey of projections
for the current and next calendar year, which we use for benchmarking our results below.

7Tab. B.2 in the Appendix shows the correlation of the skewness ratio (13) and conventional
measures of skewness from available micro data at shorter forecast horizons. All measures are highly
correlated, fostering our confidence in the skewness ratio.
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Figure 3: Disagreement and skewness in long-term inflation point forecasts

(a) Disagreement, 6 yrs ahead (fixed-horizon) (b) Skewness, 6 yrs ahead (fixed-horizon)

Note: Reported is the evolution of disagreement and skewness across countries for long-term inflation point forecasts.
Disagreement is measured as sample standard deviation, skewness is approximated by the relative position of the mean
to lowest and highest sample observations, see eq. (13) in the main text.

two candidates for parametric continous density functions to be fitted to the available
information on the cross-sectional distribution, namely the generalized beta distribu-
tion FB(a, b, l, r) and the skew t−distribution FJF (µ, σ, a, b). Both density functions
are based on four parameters, highly flexible, and provide numerous examples in ap-
plied economics and finance literature.8 They differ to the extend that the generalized
beta is defined over the closed support governed by two parameters [l, r], while the
skew t−distribution is defined on R.
To test which family of distribution functions best fits the data, we take a two step

approach. In a first step, we evaluate the goodness of fit using actual panelist responses
over the next-year forecast horizon. We estimate density functions F̂ ∗B(a, b, l, r) and
F̂ ∗JF (µ, σ, a, b) using maximum-likelihood estimation. An asterisc denotes a distribu-
tion estimated based on the full sample. We compare the outcome with a Kolmogorov-
Smirnoff (KS) test. Details and results are provided in Appendix B. Both families of
continuous density functions fit the data well. However, we decide to proceed with the
skew t−distribution based on the better performance in the KS-test. Furthermore, we
prefer the property of the skew t-family not to require the restriction of the underlying
support.

In a second step, we apply simulated method of moments (SMM) estimation to

8Examples for the generalized beta distribution can be found in the fitting of bins of inflation
projections (Engelberg, Manski, and Williams, 2009; Boero, Smith, and Wallis, 2015; Grishchenko,
Mouabbi, and Renne, 2019). The skew t−distribution was employed by Adrian, Boyarchenko, and
Giannone (2019) and Ganics, Rossi, and Sekhposyan (2020).
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fit a sequence of skew t−distributions to available statistics of cross-sectional point
forecasts over horizons from two to six years ahead. We target five moments, the
mean, the standard deviation, the skewness ratio (13), and the location of the lowest
and highest reported inflation forecast in the estimated density function. While the
first three moments are straightforward, the last two moments use an intermediate
result from step 1. Specifically, for the estimated distribution functions where we
have a full sample, F̂ ∗JF (µ, σ, a, b), we recover the percentile of the lowest and highest
observation across panelists in vector P lowi (F̂ ∗JF ) and P

high
i (F̂ ∗JF ), respectively. Fig. C.6

in the Appendix shows the histogram of these two vectors. The histograms feature a
mode around the 3rd percentile in case of lowest survey responses, and around the 97th

percentile in case of highest survey responses. Thus, ML-estimation attributes little
probability density outside the min-max range of survey answers.9 We fit a kernel
density to the vector P lowi (F̂ ∗JF ),

f̂Plow(x) =
1

Nω

NX
i=1

K

�
x−xi
ω

�
,

where N is the number of observations, xi are the percentiles in the vector P
low
i (F̂ ∗JF ),

ω the bandwidth and K(·) is the kernel smoothing function, which we choose to be a
normal. We do the same for the location of high observations, f̂Phigh(x).

We then exploit the kernel density in the SMM approach of step 2 as follows. First,
we compute the percentile of datapoints lowhit and high

h
it from the candidate distri-

bution FJF (θ), obtaining simulated percentiles P̃i(low
h
it) and P̃i(high

h
it), respectively,

both conditional on FJF (θ). Second, we compute the empirical pdf from the respec-
tive kernel density at point f̂P(·)(P̃i(·)), and substract it from the highest density at the
mode of the respective kernel density. For the case of lowest observations, we use the
following notation

∆f̂Plow(P̃i(low
h
it) | FJF (θ)) ≡ f̂Plow(mode)−f̂Plow(P̃i(low

h
it) | FJF (θ)), (14)

which is analogue for the highest observation. We refer to (14) as the location con-
straint. The value of the location constraint is smallest, the closest the percentile of
lowhit in the candidate distribution is to the mode of the kernel density. The intuition
behind the inclusion of the location contraint in the estimation procedure is to use
the location of lowest and highest sample responses in estimated parametric density
functions obtained from micro data as a penalty function to inform the estimation
process for long-term forecasts, where this information is missing. The resulting SMM
estimator takes the form

θ̂(W ) = argmin
θ

h
ψ̂data−ψ̂sim(θ)

i0
W
h
ψ̂data−ψ̂sim(θ)

i
, (15)

9The well-defined mode is another argument an favor of the skew t−distribution.
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where θ = (µ, σ, a, b), and

ψ̂data =


µhit
σhit
Shit
0
0

 , and ψ̂sim =


µ̃ | FJF (θ)
σ̃ | FJF (θ)
S̃ | FJF (θ)

∆f̂Plow(P̃i(low
h
it) | FJF (θ))

∆f̂Phigh(P̃i(high
h
it) | FJF (θ))


where a tilde denotes the simulated sample moment from the candidate distribution
FJF (θ). Let us further clarify how we compute the skewness ratio S̃ in our simulations.
In line with the modal value of the kernel densities of the location of highest and lowest
observations using micro data (Fig. C.6), we take the 3rd and 97th percentiles of the
density function FJF (θ), respectively, and compute the skewness ratio as

S̃ | FJF (θ) =
(P97 | FJF (θ)−µ̃ | FJF (θ))−(µ̃ | FJF (θ)−P3 | FJF (θ))

P97 | FJF (θ)−P3 | FJF (θ)
.

Given that we want to fit more moments than there are parameters to be estimated,
the model is over-identified and we need to specify a weighting matrix W . We employ
a matrix W that contains the inverse standard deviation of sample moments along the
main diagonal. The estimator (15) is minimized using a global search algorithm with
multiple starting points in order to insure that a global minimum is found.

Figure 4: Example estimated distribution F̂JF (µ, σ, a, b), Euro area (6 April 2020)

(a) 2-year, fixed-horizon (b) 6-year, fixed horizon

Note: The skew t−distribution FJF (µ, σ, a, b) estimated via simulated method of moments using the cross-sectional
mean, the standard deviation, and the highest and lowest reported values of inflation point forecasts at a given date
t from a panel of professional forecasters. The example is based on Euro area data on inflation point forecasts over a
2-year and 6-year fixed-horizon approximation. Underlying raw data is from Consensus Economics.
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As a result, we obtain a sequence of estimated continuous density functions F̂JF (µ, σ,
a, b) for each country i, forecast horizon h and date t from which inflation risk measures
DALhit, DAH

h
it and probT

h
it from equations (6), (7) and (8) can be computed. The

thresholds are chosen as πi,t = π∗i,t−0.1 and π̄i,t = π∗i,t + 0.1.

Fig. 4 illustrates the obtained continuous density functions across point forecasts
using data from the Euro area for forecast horizons of two and six years from a survey
published in April 2020. The underlying survey data are plotted as red dots on the
x-axis. The procedure sucessfully constructs a probability density around the mean
point forecast that is consistent with the moments provided in the survey data. In this
example, medium-term forecasts feature negative skweness, while long-term forecasts
exhibit positive skewness. Disagreement is significantly lower over the longer forecast
horizon of six years. The example further illustrates why the underlying data does
not allow to map the interval chosen for our anchoring measure into the official target
corridors defined in central bank operational frameworks, usually defined as +/− 1
percentage point around the inflation point target. The reason is that the underlying
data are point forecasts that exhibit significantly lower dispersion than e.g. individual
forecasters’ uncertainty around the point forecast.

Fig. 5 summarizes some time-series properties of the estimated distribution func-
tions, the underlying data and the anchoring measures. For the case of the Euro area,
there is a trend since mid-2012 toward larger risk of disanchoring due to low inflation.
At the same time, the main anchoring measure seems overall quite stable over the
sample period. It is this feature of the data that we refer to as symmetry property,
which we would like to emphasize and investigate more systematically in the next
section.

Tab. 3 provides summary statistics of the underlying survey data, converted to
fixed-horizon forecasts, and inflation risk measures. To save space, just the forecast
horizons of two, four and six years are reported. Some features of the data deserve
to be mentioned. The consensus among point forecasts is on average more distant
from target for shorter projection horizons and in EMEs. Disagreement is present in
the full sample and in the two sub-samples. Interestingly, over the two year horizon,
forecasters never fully agree on inflation outcomes. Skewness does seem to average out
in the mean, while being slightly positive in the AEs and in the EMEs sample.

Turning to the inflation risk measures, we can refine some observations we made
based on the raw survey data. The term structure of our probability measure of an-
chored inflation expectations has a positive slope. The term structure of disanchoring
due to low inflation is negatively sloped, while disanchoring due to high inflation is
stable over all forecast horizons in the full sample. While disanchoring due to low infla-
tion is more present in the AEs sample, disanchoring due to high inflation dominates
in the EMEs sample.

[Tab. 3 about here]
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Figure 5: Time series properties of densities and anchoring measure, Euro area

(a) Percentiles of F̂JF (b) Expectations anchoring measures

Notes: Skew t−distribution estimated via simulated method of moments to professional forecasters’
cpi inflation projections over horizons of two to six years. Original data is from Consensus Forecast.

4 Empirical analysis

4.1 Determinants of expectation anchoring

In order to better understand the underlying data, we first examine the determinants
of expectation anchoring based on a pooled regression of the following specification:

probT hit = c+ β1d
fh3
t + β2d

fh4
t + β3d

fh5
t + β4d

fh6
t + δ1d

EME
t + γσπ24mi,t + νY + εit (16)

We regress the forecast horizon and a dummy variable capturing emerging market
countries (EMEs) on different endogenous variables. All regressions contain a time-
series of rolling window standard deviation of realized headline consumer price inflation
with a backward looking horizon of 24 months. Further, the model includes a full set
of year dummies. Hence, the reference group, captured by the constant, is the variable
of interest at the two year horizon in an advanced economy.

Tab. 4 provides the corresponding results. The term-structure of anchoring is up-
ward sloping, for the conventional measure of the distance of mean point forecasts
with respect to the target midpoint in column (1), but also in the probability measure
probT hit in column (4). This is an important characteristic of well-anchored inflation
expectations, which revert back to target over time in the sample of countries consid-
ered. Volatility of realized inflation has the expected effect on the distance to target
and the probability to be on target. Periods of high volatility make it harder to be
close to target. EMEs have on average less well-anchored inflation expectations. The
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distance to target is around one fifth larger, the probability around target roughly one
fifth lower compared to AEs.

Inflation volatility increases disagreement among professional forecasters, as shown
in column (2). The term-structure of disagreement is slightly hump-shaped, which
is consistent with previous findings of relatively flat term structure of disagreement
(Andrade et al., 2016). Disagreement is found to be only marginally higher in EMEs.

Asymmetry, here captured by the skewness ratio from eq. (13), is averaging out
in the pooled model, as shown in column (3). Inflation volatility does not affect
skewness. Longer forecast horizons have slightly more positive skewness, implying an
upward sloping term structure of skewness.

Finally, disanchoring due to low inflation in column (5) rises with higher inflation
volatility, while the latter dampens disanchoring due to low inflation, column (6).
The term structure of the two disanchoring measures feature an interesting property:
while DAH is stable over different forecast horizons, DAL is downward sloping, thus
contributing to the increase in the probability measure around target. One might
speculate whether this is due to predominantly disinflationary shocks over the sample
period under consideration, leading to a ’targeting from below’. In Section 4.3 we are
considering asymmetric credibility loss terms in order to analyse this question in more
depth.

[Tab. 4 about here]

4.2 Anchoring and inflation target formulations

This section investigates the main question of the paper. First, we will test whether
the formulation of the infation objective with a numerical definition changes anchoring.
Bundick and Smith (2018) have found mixed effects for the cases of Japan and the
United States. We revisit the question in an econometric panel model of the form

probT hit = c+ βdnumTargetit + γσπ24mi,t + νi + νY + εit (17)

The specification includes the same variable controlling for inflation volatility as model
(16), namely a rolling window standard deviation of realized headline consumer price
inflation with a backward looking horizon of 24 months. This captures broadly the
economic conditions. Further, inflation forecasts are known to respond to inflation
volatility (Capistran and Timmermann, 2009). A full set of year dummies νY account
for shocks to global inflation and their implications for forecasts. Galati, Poelekke, and
Zhou (2011) show evidence that the collapse of Lehman Brothers has lead to changes
in survey-based longer-term inflation expectations in the United States and United
Kingdom. All remaining country differences are acounted for by country fixed effects
νi. Our interest is in the effect of a dummy variable that takes the value of one if the
inflation objective is described in a numerical precise way.

[Tab. 5 about here]

Tab. 5 A. present the results. Model (17) is estimated separately for each forecast
horizon, the reference group are all target definitions without precise numerical target
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definition and that have, instead, a more vague definition of price stability. Standard
errors are computed following the procedure proposed by Driscoll and Kraay (1998),
which are robust to spatial dependence, heteroscedasticity and serial correlation. The
coefficient of interest is insignificant for horizons of two to four years, implying that
there is no significant effect on anchoring by the introduction of a numerical target
formulation per se.

Next, we differentiate between range targets and point targets. We group all target
definitions containing a numerical definition of a range or tolerance band into a variable
dnumRangei,t , while all target definitions with a reference to a point target are grouped
into a variable dnumPointi,t . Note that the two categorical variables are not mutually
exclusive. We estimate the following model

probT hit = c+ β1d
numRange
it + β2d

numPoint
it + γσπ24mi,t + νi + νY + εit (18)

Results in Tab. 5 B. provide an interesting finding. While the presence of a numerical
range lowers the anchoring measure, a target definition which includes a reference to a
numerical point increases the probability mass of pointpredictions around target. We
provide the p-values of an F-test for equality in the two coefficients (H0 : β1 = β2).
The test clearly rejects the null hypothesis of equal coefficients for horizons of three
to six years.

Having documented a positive effect of a numerical reference to a point target on
expectation anchoring, we next explore the question of differential effects of numerical
target formulations in more detail. To this end, only countries and episodes with a
numerical target definition are compared.10 We estimate the following model

probT hit = c+ β1d
hybrid
it + β2d

point
it + γσπ24mit + νi + νY + εit, (19)

where dhybirdit contains all range targets with reference to a focal point, and point targets
with a tolerance band. dpointit is gauging the effect of pure point targets. The reference
group is the group of numerical range targets without emphasis on a focal point.

[Tab. 6 about here]

Tab. 6 presents the results for model (19). As before, the reference to a focal point
improves anchoring along all forecast horizons. The quantitative difference is sizeable,
more than doubling the probability to be close to target. Pure point targets have a
slightly higher coefficient than hybrid strategies at the longest forecast horizon of six
years, while hybrid definitions have a larger coefficient at shorter horizons. However,
the coefficients of dhybrid and dpoint are mostly not statistically different from each other
according to the results from a corresponding F-test.

Tab. 7 contains the results of model (19) re-estimated with the two measures of dis-
anchoring as endogenous variable. This specification allows to analyse the differential
effects of target formulations on the symmetry of the distribution of point forecasts
around the inflation objective. This aspect is novel in the empirical analysis of ex-
pectation anchoring. Panel A. presents effects on disanchoring due to low inflation,

10This excludes the Euro area from the sample, and observations of the United States before March
2012 and Japan before the introduction of numerical target in February 2012.
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while panel B. contains effects on disanchoring due to high inflation. Hybrid target
formulations are associated with a downward shift the distribution of point forecasts
compared to target ranges. Specifically, hybrid targets feature lower upside risk, while
also exhibiting higher downside risk.

[Tab. 7 about here]

To understand better the asymmetric effects of target types on the shape of the
distribution of point forecasts, we explore the shift of selected moments in the cross-
sectional distribution. Specifically, we define the difference between the mean, the 5th

percentile and the 95th percentile of the cross-sectional distribution and the inflation
target as

disthit = π∗it−µhit,

Ghit(05) = π∗it−P hit(05),

Ghit(95) = π∗it−P hit(95),

and analyse the quantitative differential effect of target types on these three distance-
to-target measures according to model (19). To save space, Tab. 8 shows the results for
forecast horizons of two and six years. The entire cross-sectional distribution of point
forecasts gets compressed and shifts downward for countries operating with hybrid
targets or point targets compared to range targets. This includes the distance of
the cross-sectional mean to the inflation target for horizons of two and six years, as
columns (1) and (2) show. The effects are not symmetric, however. Upside risk to
inflation is curved in most effectively at a horizon of two years, as can be read from
column (5). However, this beneficial effect comes also at a cost, as downside risk to
inflation rises, as confirmed by lower tail observations reported in columns (3) and (4).

[Tab. 8 about here]

4.3 Credibility loss, anchoring and target formulations

While the previous section documents unconditional asymmetric effects of inflation
target formulations on the cross-sectional distribution of point forecasts, Section 4.1
shows that the shape, specifically skewness, is not stable over time, but features per-
sistent fluctuations with periods of positve and negative skewness. Motivated by this
observation, this section explores systematically the relation between inflation perfor-
mance and expectations anchoring. Following Neuenkirch and Tillmann (2014), we
construct a credibility loss indicator and examine its conditional effects on expectations
anchoring. We define credibility losses in country i in period t as

CLit =
1

T −1

t−1X
s=t−T

(πis−π∗is) | πis−π∗is |

where the backward looking rolling window covers T = 60 months. The relatively
long backward looking reference period is motivated with the intention to distinguish
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target misses due to interest rate smoothing from target misses due to possibly lower
commitment for the inflation objective. While we are interested in the latter, also the
former generates persistent target misses. Let us further define

CL
(+)
it =

(
CLit, if CLit ≥ 0
0, otherwise

and CL
(−)
it =

(
| CLit |, if CLit ≤ 0
0, otherwise

to capture credibility losses due to periods of an inflation shortfall CL
(−)
it and over-

shooting CL
(+)
it with respect to the midpoint of the inflation objective. Tab. 2 presents

summary statistics on the credibility loss indicators, revealing significant differences
in the characteristics of CL

(−)
it and CL

(+)
it . Credibility losses due to overshooting are

almost twice as high on average and exhibit 3.5 times the standard deviation of infla-
tion shortfalls. To quantify the effects of credibility losses on expectation anchoring,
we specify the following empirical model

probT hit = c+ β1CL
+
it + β2CL

−
it + γσ

π24m
it + νi + νY + εit. (20)

Besides our main measure of anchoring probT hit , we consider several outcome variables
of interest on the left-hand side of model (20).

Tab. 9 presents the results for forecast horizons of four and six years. To get an idea
of the relationship between credibility losses and contemporaneous inflation, column
(1) shows that overshooting is related to contemporaneous inflation realizations above
target, while shortfall has a negative sign but is not statistically significant.

Table 2: Summary statistics of credibility losses

Variable Obs Mean Std. Dev. Min Max

CL(−) 4,456 .92 1.39 0 6.2

CL(+) 4,456 1.63 4.82 0 70.6

Notes. Data is pooled across all countries, sample period
2005m3-2020m4.

As suggested by the previous analysis, the two credibility loss indicators have asym-
metric effects on anchoring properties. Credibility loss due to inflation shortfalls are
associated with significantly lower probability of inflation being close to target, while
credibility loss due to overshooting does not compromise expectations anchoring at
conventional levels of statistical significance, cf. columns (2) and (3). Considering the
distance of the mean prediction from target, both inflation shortfalls and overshooting
have statistically significant effects, shifting the mean forecast in the expected direc-
tion, cf. column (8) and (9). Meanwhile, credibility losses do shift the tails of the
cross-sectional distribution in the expected direction, cf. columns (4)-(7).

[Tab. 9 about here]
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Our findings are consistent with forecasters’ responses from a survey asking what
influences their long-term inflation projections. Vincent-Humphreys, Dimitrova, and
Falck (2019) present data showing that while 80 percent consider the central banks
inflation target, 55 percent also use trends in actual inflation to form longer-term
expectations. Our empirical results suggest that the cross-section of professional fore-
casters attaches different weights to the inflation target and the recent inflation track
record, leading to changes in the tails of the cross-sectional distribution over time
(Patton and Timmermann, 2010).

Ehrmann (2015) documents lower expectations anchoring during periods of inflation
persistently undershooting the inflation target, while persistent target overshooting
is not lowering anchoring. He considers short-term inflation expectations of up to
one year ahead forecasts, measuring the effect of pass-through of current inflation on
inflation expectations, forecasters’ disagreement and forecast revisions. His sample
covers ten industrialized economies from January 1990 to December 2014. Our results
confirm his findings for long-term inflation expectations, a later sample period and a
country sample that includes EMEs.

In a final step, we would like to know whether the shift in the tails of the distribution
conditional on low credibility of the central bank’s inflation target depends on the
target formulation. To this end, we interact the credibility loss terms with our dummy
variables of hybrid inflation targets and pure point targets, giving rise to the following
model

probT hit =c+ β1d
hybrid
it × CL−it + β2d

hybrid
it × CL+it + β3d

point
it × CL−it + β4d

point
it × CL+it

+ γ1d
hybrid
it + γ2d

point
it + γ3CL

+
it + γ4CL

−
it + γ5σ

π24m
it + νi + νY + εit. (21)

Tab. 10 shows the results, as before in a sample that excludes all target definitions
without an unambiguous numerical definition. We would like to highlight some results.
First, the risk of disanchoring due to low inflation during periods of credibility loss
from undershooting is significantly lower in the presence of a point target (col. 3-4).
The interaction of pure point target strategies with CL(−) lower this risk by -0.154
and -0.170 percentage points for forecast horizons of four and six years, respectively.
The risk from disanchoring due to low inflation is much less effectively contained in
the presence of hybrid targets.

We arrive at a similar conclusion for periods of credibility loss due to overshooting.
The respective interaction with pure point targets is significantly lowering the mea-
sure of disanchoring due to high inflation at both forecast horizons. Overall, these
findings are consistent with the interpretation that range targets and tolerance bands
are perceived by professional forecasters as zones where monetary policy is less active
(Orphanides et al., 2000). The results are further inconsistent with the hypothesis
that target ranges are fostering central bank credibility (Demertzis and Viegi, 2009).

[Tab. 10 about here]
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5 Robustness

As robustness and extension to the previous analysis, this section considers disagree-
ment as the outcome variable of interest in model (19). Disagreement is a different
concept for expectation anchoring than the previously defined measures with reference
to the central tendency of point forecasts. Lower disagreement is associated with better
expectations anchoring. From a central bank perspective, disagreement is undesirable
as models with imperfect information show that welfare costs of nominal rigidities
are proportional to the amount of disagreement about price dynamics in the economy
(Woodford, 2002; Mankiw, Reis, and Wolfers, 2004). Less dispersed beliefs about in-
flation might further enhance the expectation channel of monetary policy transmission
(Capistran and Timmermann, 2009).

Tab. 11 presents the results on disagreement, measured by the cross-sectional inter-
quartile range derived from the estimated continuous distribution function of cross-
sectional inflation point forecasts. We find a strong and positive effect of inflation
volatility on disagreement across all forecast horizon, in line with previous empirical
findings (Ball, 1992; Dovern, Fritsche, and Slacalek, 2012). Further, point targets
and hybrid targets are associated with lower levels of disagreement at medium-term
forecast horizons of two to four years. We take this finding as further evidence for
stronger anchoring in the presence of a numerical point target and emphasis on a
numerical midpoint within a range or tolerance band.

Our findings sharpen previous empirical work on the effect of IT on forecast dis-
agreement, while being broadly consistent with earlier results. Johnson (2002) finds
in a sample of 11 advanced economies that the IT framework is not able to lower
disagreement, a result later confirmed by Cecchetti and Hakkio (2010) and Siklos
(2013). Confirming the non-result for advanced countries, Capistran and Ramos-
Francia (2010) show that the adoption of IT lowers forecast disagreement in emerging
market economies. Their work uses Consensus Economics forecast data for 25 coun-
tries, ending in November 2006 and limited to short-term forecast horizons of up to
one calendar year.

[Tab. 11 about here]

6 Conclusion

The adoption of a quantitative target for inflation is commmon practice among central
banks. While there is strong convergence toward a target between two to three percent,
there remains remarkable heterogeneity with respect to the exact formulation of the
inflation target. Do alternative inflation target formulations matter for expecations
anchoring?

This paper provides evidence that a point target increases the degree of anchoring
of inflation expectations over horizons of two to six years compared to central banks
with a mere quantitative definition of price stability. Based on a panel of 29 countries,
we show that a point target steers inflation expectations closer to the inflation aim.

Focussing only on the subset of countries operating with a numerical definition of the
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inflation objective, we find that the unconditional effects of point targets and hybrid
targets are quantitative significant, increasing the probability of inflation falling within
a narrow interval around the defined objective compared to target ranges. We find
that inflation point targets are most successful in limiting upside and downside risks
to the inflation outlook conditional on persistent deviations of inflation realizations
from target, while hybrid strategies e.g. point targets with a tolerance band leave
more room for interpretation of the inflation target during such episodes. The results
are further consistent with the view that range targets are interpreted by professional
forecasters as zones where monetary policy is less responsive.

The analysis is based on a measure of expectation anchoring derived from the cross-
sectional distribution of private sector point forecasts. A contribution of the paper
is to analyze the shape and asymmetry of cross-sectional beliefs about inflation for
forecast horizons of two to six years in the context of expectation anchoring. The
empirical measures are shown to be consistent with a risk management model with
risk-averse and potentially asymmetric central bank preferences.

The results of this paper contribute to an unsettled debate about pros and cons
of different types of inflation targets (Apel and Clausen, 2017; Chung et al., 2020).
We document that it is common practice for central banks to change elements in the
specification of their numerical inflation target. This paper suggests that point targets
or focal points should be considered as an important device to improve expectations
anchoring and the balance of risks to the inflation outlook.

Some limitations apply to our results. The findings are based on a survey among
professional forecasters who are relatively well informed about central bank objectives
and attentive to changes in the operational framework. While the views of professional
forecasters are widely reported in the news and is likely to influence other agents in
the economy (Carroll, 2003), recent research finds that households and firms have a
poor understanding of inflation dynamics and are generally inattentive to central bank
announcements.11 If central bankers want to exploit the inflation target formulation
as a policy tool to manage the inflation outlook, then these deficiencies might call for
improved central bank communication (Coibion et al., 2020).

11See Afrouzi et al. (2015), Coibion, Gorodnichenko, and Weber (2019), and Lewis, Makridis, and
Mertens (2020).
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Table 3: Summary statistics of survey data and inflation risk measures

Full sample AEs EMEs
mean sd min max mean sd min max mean sd min max

Survey data
distance, mean to target (midpoint)
fh2 0.53 0.82 0.00 13.89 0.39 0.39 0.00 1.99 0.70 1.11 0.00 13.89
fh4 0.36 0.48 0.00 5.09 0.26 0.28 0.00 1.60 0.48 0.62 0.00 5.09
fh6 0.32 0.38 0.00 3.53 0.23 0.27 0.00 1.76 0.41 0.45 0.00 3.53
disagreement (sd)
fh2 0.38 0.25 0.06 3.45 0.32 0.12 0.11 1.10 0.43 0.32 0.06 3.45
fh4 0.39 0.27 0.00 2.42 0.33 0.19 0.04 1.24 0.45 0.32 0.00 2.42
fh6 0.37 0.28 0.00 2.45 0.29 0.18 0.00 0.88 0.44 0.34 0.00 2.45
skewness
fh2 0.023 0.21 -0.60 0.65 0.0032 0.20 -0.55 0.63 0.047 0.21 -0.60 0.65
fh4 0.054 0.28 -0.77 0.87 0.028 0.27 -0.72 0.78 0.087 0.28 -0.77 0.87
fh6 0.092 0.30 -0.81 1.72 0.11 0.29 -0.78 1.18 0.072 0.30 -0.81 1.72
Inflation risk measures
probT
fh2 0.15 0.14 0.00 0.82 0.18 0.14 0.00 0.58 0.12 0.13 0.00 0.82
fh4 0.21 0.21 0.00 1.00 0.24 0.19 0.00 0.97 0.19 0.22 0.00 1.00
fh6 0.25 0.24 0.00 1.00 0.31 0.24 0.00 1.00 0.20 0.23 0.00 1.00
DAL
fh2 0.39 0.35 0.00 1.00 0.51 0.33 0.00 1.00 0.28 0.32 0.00 1.00
fh4 0.33 0.27 0.00 1.00 0.39 0.27 0.01 1.00 0.27 0.25 0.00 1.00
fh6 0.32 0.26 0.00 1.00 0.36 0.27 0.00 1.00 0.29 0.25 0.00 1.00
DAH
fh2 0.46 0.35 0.00 1.00 0.31 0.28 0.00 1.00 0.60 0.35 0.00 1.00
fh4 0.46 0.30 0.00 1.00 0.37 0.25 0.00 0.96 0.54 0.32 0.00 1.00
fh6 0.43 0.29 0.00 1.00 0.34 0.24 0.00 1.00 0.51 0.31 0.00 1.00
N 969 525 444

Summary statistics of survey data from Consensus, converted into fixed-horizon forecasts over
horizons of two, four and six years. The measure of skewness is computed as a ratio of the mean
relative to lowest and highest observations, see the main text for details. AEs denote advanced
economies, EMEs denote emerging market economies.

Table 4: Determinants of inflation risk measures

(1) (2) (3) (4) (5) (6)
distAbs stdev skewness Ratio probT DAL DAH

sd infl. (24m) 0.405∗∗∗ 0.177∗∗∗ 0.000906 -0.0357∗∗∗ -0.0309∗∗∗ 0.0665∗∗∗

(0.0120) (0.00372) (0.00689) (0.00521) (0.00732) (0.00743)

dfh3 -0.124∗∗∗ 0.0419∗∗∗ 0.0187 0.0411∗∗∗ -0.0487∗∗∗ 0.00755
(0.0202) (0.00706) (0.0120) (0.00906) (0.0127) (0.0129)

dfh4 -0.170∗∗∗ 0.0509∗∗∗ 0.0317∗∗∗ 0.0644∗∗∗ -0.0670∗∗∗ 0.00262
(0.0202) (0.00706) (0.0120) (0.00906) (0.0127) (0.0129)

dfh5 -0.198∗∗∗ 0.0413∗∗∗ 0.0550∗∗∗ 0.0849∗∗∗ -0.0763∗∗∗ -0.00853
(0.0202) (0.00706) (0.0120) (0.00906) (0.0127) (0.0129)

dfh6 -0.212∗∗∗ 0.0304∗∗∗ 0.0694∗∗∗ 0.104∗∗∗ -0.0836∗∗∗ -0.0207
(0.0202) (0.00706) (0.0120) (0.00907) (0.0127) (0.0129)

dEME 0.0445∗∗∗ 0.0424∗∗∗ 0.0382∗∗∗ -0.0425∗∗∗ -0.158∗∗∗ 0.200∗∗∗

(0.0147) (0.00455) (0.00857) (0.00645) (0.00906) (0.00920)

Constant 0.205∗∗∗ 0.191∗∗∗ -0.0110 0.184∗∗∗ 0.464∗∗∗ 0.352∗∗∗

(0.0623) (0.0222) (0.0216) (0.0164) (0.0230) (0.0233)

adj. R-squared 0.24 0.28 0.04 0.06 0.12 0.18
N.Obs 5368 9574 4580 4628 4628 4628
year control Yes Yes Yes Yes Yes Yes

Notes. Pooled OLS, standard errors in parentheses. ***/**/*/ denote statistical signifi-
cance at the 1%/5%/10% level.
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Table 5: Effect of numerically defined target

A. Numerical targe definition

(1) (2) (3) (4) (5)
probT probT probT probT probT
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) -0.0195∗∗∗ -0.0184 -0.0313∗∗ -0.0497∗∗∗ -0.0308∗∗

(0.00732) (0.0137) (0.0134) (0.0120) (0.0152)

dnumTarget 0.0183 -0.00214 -0.0216 -0.0309∗∗ -0.0386∗∗∗

(0.0231) (0.0176) (0.0134) (0.0126) (0.0141)

Constant 0.172∗∗∗ 0.216∗∗∗ 0.241∗∗∗ 0.264∗∗∗ 0.253∗∗∗

(0.0250) (0.0225) (0.0199) (0.0226) (0.0181)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 926 926 926 926 924
N.Countries 29 29 29 29 29
adj. R-squared 0.07 0.03 0.04 0.06 0.04

B. Role of inflation target types

probT probT probT probT probT
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) -0.0193∗∗ -0.0184 -0.0316∗∗ -0.0501∗∗∗ -0.0313∗∗

(0.00732) (0.0135) (0.0131) (0.0114) (0.0154)

dnumRange -0.0276 -0.0640∗ -0.0855∗ -0.102∗∗ -0.0926∗∗

(0.0409) (0.0349) (0.0466) (0.0445) (0.0425)

dnumPoint 0.0733∗∗∗ 0.0760∗∗∗ 0.0670∗∗∗ 0.0725∗∗∗ 0.0585∗∗∗

(0.0186) (0.0180) (0.0233) (0.0253) (0.0183)

Constant 0.150∗∗∗ 0.185∗∗∗ 0.205∗∗∗ 0.221∗∗∗ 0.210∗∗∗

(0.0255) (0.0226) (0.0282) (0.0287) (0.0231)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 926 926 926 926 924
N.Countries 29 29 29 29 29
adj. R-squared 0.09 0.05 0.06 0.08 0.05
p-val(F-test) 0.003 0.000 0.000 0.000 0.000

Notes. Standard errors based on Driscoll and Kraay (1998) in parentheses.
***/**/*/ denote statistical significance at the 1%/5%/10% level. F-test
for H0 : d

numRange = dnumPoint.
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Table 6: Effect of target types on probT

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) -0.0121 -0.0112 -0.0241∗ -0.0441∗∗∗ -0.0271∗

(0.00757) (0.0145) (0.0143) (0.0127) (0.0160)

dhybrid 0.108∗∗∗ 0.138∗∗∗ 0.143∗∗∗ 0.157∗∗∗ 0.133∗∗∗

(0.0151) (0.0225) (0.0238) (0.0274) (0.0228)

dpoint 0.0803∗∗∗ 0.0984∗∗∗ 0.117∗∗∗ 0.153∗∗∗ 0.163∗∗∗

(0.0246) (0.0248) (0.0363) (0.0327) (0.0325)

Constant 0.0494∗∗ 0.0703∗∗ 0.101∗∗∗ 0.139∗∗∗ 0.0916∗∗∗

(0.0190) (0.0338) (0.0344) (0.0311) (0.0224)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 855 855 855 855 853
N.Countries 28 28 28 28 28
adj. R-squared 0.11 0.06 0.07 0.09 0.07
p-val(F-test) 0.205 0.098 0.441 0.909 0.332

Notes. Standard errors based on Driscoll and Kraay (1998)
in parentheses. ***/**/*/ denote statistical significance at
the 1%/5%/10% level.
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Table 7: Effect of target types on disanchoring measures (DAL, DAH)

A. Disanchoring from low inflation (DAL)

(1) (2) (3) (4) (5)
DAL DAL DAL DAL DAL
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) -0.0139 -0.0312∗∗ -0.0164 -0.0122 -0.0210
(0.0114) (0.0141) (0.0159) (0.0169) (0.0225)

dhybrid 0.234∗∗∗ 0.173∗ 0.139 0.132∗ 0.134∗

(0.0838) (0.0925) (0.0870) (0.0771) (0.0674)

dpoint 0.196∗ 0.0650 -0.0250 -0.0323 -0.0288
(0.105) (0.118) (0.101) (0.0894) (0.0757)

Constant 0.345∗∗∗ 0.358∗∗∗ 0.303∗∗∗ 0.314∗∗∗ 0.338∗∗∗

(0.0578) (0.0777) (0.0721) (0.0655) (0.0623)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 855 855 855 855 853
N.Countries 28 28 28 28 28
adj. R-squared 0.21 0.14 0.13 0.11 0.12
p-val(F-test) 0.530 0.039 0.001 0.000 0.000

B. Disanchoring from high inflation (DAH)

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) 0.0260∗ 0.0424∗∗∗ 0.0405∗∗ 0.0564∗∗∗ 0.0481∗∗∗

(0.0137) (0.0118) (0.0163) (0.0186) (0.0181)

dhybrid -0.342∗∗∗ -0.311∗∗∗ -0.282∗∗∗ -0.289∗∗∗ -0.267∗∗∗

(0.0772) (0.0930) (0.0888) (0.0781) (0.0709)

dpoint -0.277∗∗∗ -0.163 -0.0920 -0.121 -0.135
(0.0933) (0.120) (0.110) (0.0999) (0.0936)

Constant 0.606∗∗∗ 0.571∗∗∗ 0.596∗∗∗ 0.547∗∗∗ 0.500∗∗∗

(0.0515) (0.0691) (0.0695) (0.0597) (0.0526)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 855 855 855 855 853
N.Countries 28 28 28 28 28
adj. R-squared 0.29 0.22 0.20 0.21 0.21
p-val(F-test) 0.217 0.013 0.000 0.001 0.007

Notes. Standard errors based on Driscoll and Kraay (1998) in parentheses.
***/**/*/ denote statistical significance at the 1%/5%/10% level.
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Table 8: Asymetric effect of target types on disanchoring

(1) (2) (3) (4) (5) (6)
dist dist G05 G05 G95 G95
(h=2) (h=6) (h=2) (h=6) (h=2) (h=6)

sd infl. (24m) 0.522∗∗∗ 0.230∗∗ 0.282∗∗ -0.0125 0.880∗∗∗ 0.501∗∗∗

(0.186) (0.0887) (0.120) (0.0513) (0.273) (0.153)

dhybrid -0.580∗∗∗ -0.373∗∗∗ -0.493∗∗∗ -0.477∗∗∗ -0.859∗∗∗ -0.358∗∗

(0.140) (0.0982) (0.155) (0.123) (0.197) (0.157)

dpoint -0.471∗∗ -0.248∗ -0.370∗ -0.360∗∗ -0.730∗∗ -0.209
(0.197) (0.125) (0.192) (0.143) (0.281) (0.214)

Constant -0.313 0.0832 -1.167∗∗∗ -0.229∗ 0.104 0.417∗∗∗

(0.190) (0.0949) (0.222) (0.118) (0.421) (0.139)

country FE Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes
N.Obs 964 961 855 853 855 853
N.Countries 28 28 28 28 28 28
adj. R-squared 0.28 0.22 0.21 0.07 0.33 0.22
p-val(F-test) 0.329 0.045 0.249 0.106 0.406 0.180

Notes. Standard errors based on Driscoll and Kraay (1998) in parentheses.
***/**/*/ denote statistical significance at the 1%/5%/10% level.

Table 9: Credibility loss indicator

(1) (2) (3) (4) (5) (6) (7) (8) (9)
π−π∗ probT(4) probT(6) DAL(4) DAL(6) DAH(4) DAH(6) Mean(4) Mean(6)

CL(−) -0.101 -0.0145∗ -0.0140∗ 0.0511∗∗∗ 0.0483∗∗∗ -0.0366∗∗∗ -0.0343∗∗∗ -0.0218∗ -0.0168∗

(-1.64) (-1.87) (-1.94) (6.52) (6.27) (-4.57) (-6.87) (-1.80) (-1.96)

CL(+) 0.141∗∗∗ -0.000651 0.000736 -0.00502∗∗ -0.00957∗∗∗ 0.00567∗∗ 0.00884∗∗∗ 0.0565∗∗∗ 0.0444∗∗∗

(3.62) (-0.40) (0.57) (-2.47) (-5.62) (2.10) (4.36) (5.08) (5.62)

sd infl. (24m) -0.156 -0.0312 -0.0375∗ 0.0281 0.0444∗∗ 0.00307 -0.00694 0.0723 0.0259
(-0.62) (-1.56) (-1.89) (1.43) (2.05) (0.13) (-0.41) (1.35) (0.74)

Constant -0.327 0.239∗∗∗ 0.240∗∗∗ 0.299∗∗∗ 0.314∗∗∗ 0.462∗∗∗ 0.446∗∗∗ 2.547∗∗∗ 2.465∗∗∗

(-1.21) (10.33) (14.41) (17.83) (14.57) (23.66) (32.64) (61.17) (38.88)

country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
N.Obs 4409 926 924 926 924 926 924 932 930
N.Countries 29 29 29 29 29 29 29 29 29
adj. R-squared 0.31 0.05 0.05 0.16 0.17 0.15 0.18 0.47 0.42

Notes. t statistics in parentheses ***/**/*/ denote statistical significance at the 1%/5%/10% level.

35



Table 10: Credibility loss and target types

(1) (2) (3) (4) (5) (6)
probT(4) probT(6) DAL(4) DAL(6) DAH(4) DAH(6)

dhybrid 0.162∗∗∗ 0.121∗∗∗ 0.122∗ 0.130∗∗ -0.284∗∗∗ -0.252∗∗∗

(5.03) (3.65) (1.87) (2.31) (-4.10) (-4.59)

dpoint 0.143 0.128 0.0857 0.161∗ -0.229∗∗ -0.289∗∗∗

(1.61) (1.63) (0.95) (1.95) (-2.25) (-3.06)

CL(+) 0.0130 0.00654 -0.0412∗∗∗ -0.0305∗∗ 0.0283∗∗ 0.0239∗∗

(1.65) (0.77) (-2.67) (-2.19) (2.08) (2.20)

CL(−) -0.0183 -0.0374∗ 0.108∗∗∗ 0.104∗∗∗ -0.0902∗∗∗ -0.0669∗∗∗

(-1.29) (-1.77) (5.38) (4.15) (-9.09) (-4.51)

CL(+) × dhybrid -0.0136∗ -0.00585 0.0371∗∗ 0.0225 -0.0235∗ -0.0167
(-1.94) (-0.76) (2.32) (1.59) (-1.72) (-1.58)

CL(−) × dhybrid 0.00611 0.0272 -0.0581∗∗ -0.0531∗ 0.0520∗∗∗ 0.0259
(0.39) (1.16) (-2.42) (-1.94) (3.79) (1.61)

CL(+) × dpoint -0.0142 -0.00392 0.0644∗∗∗ 0.0341∗∗ -0.0502∗∗∗ -0.0302∗∗

(-1.06) (-0.30) (3.99) (2.42) (-3.15) (-2.25)

CL(−) × dpoint -0.00193 0.0356 -0.154∗∗∗ -0.170∗∗∗ 0.156∗∗∗ 0.135∗∗∗

(-0.05) (0.89) (-5.06) (-4.97) (6.18) (4.62)

sd infl. (24m) -0.0258 -0.0325 0.0168 0.0262 0.00907 0.00622
(-1.12) (-1.30) (0.74) (1.14) (0.45) (0.33)

Constant 0.0854∗∗ 0.158∗∗∗ 0.249∗∗∗ 0.250∗∗∗ 0.665∗∗∗ 0.592∗∗∗

(2.13) (4.01) (3.51) (3.80) (11.73) (12.18)

country FE Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes
N.Obs 855 853 855 853 855 853
N.Countries 28 28 28 28 28 28
adj. R-squared 0.08 0.08 0.31 0.30 0.32 0.31

Notes. t statistics in parentheses ***/**/*/ denote statistical significance at the 1%/5%/10% level.

Table 11: Effect of target types on disagreement (IQR)

(1) (2) (3) (4) (5)
IQR IQR IQR IQR IQR
(h=2) (h=3) (h=4) (h=5) (h=6)

sd infl. (24m) 0.213∗∗∗ 0.189∗∗∗ 0.244∗∗∗ 0.195∗∗∗ 0.181∗∗∗

(0.0579) (0.0568) (0.0461) (0.0484) (0.0466)

dhybrid -0.129∗∗∗ -0.0723∗ -0.117∗∗ -0.0306 0.0454
(0.0435) (0.0396) (0.0503) (0.0416) (0.0478)

dpoint -0.128∗∗ -0.00793 -0.0903 -0.0244 0.0548
(0.0490) (0.0654) (0.0572) (0.0653) (0.0648)

Constant 0.455∗∗∗ 0.386∗∗∗ 0.346∗∗∗ 0.319∗∗∗ 0.225∗∗∗

(0.0964) (0.0835) (0.0896) (0.0810) (0.0468)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 855 855 855 855 853
N.Countries 28 28 28 28 28
adj. R-squared 0.26 0.18 0.22 0.14 0.13
p-val(F-test) 0.964 0.176 0.593 0.909 0.813

Notes. Standard errors based on Driscoll and Kraay (1998) in parentheses.
***/**/*/ denote statistical significance at the 1%/5%/10% level.
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Online Appendix

Anchoring of long-term inflation expectations:
Do inflation target formulations matter?

by Christoph Grosse-Steffen1

A Classification

Figure A.1: Targets for monetary policy, AEs (1)

(a) Australia (b) Canada

(c) Czech Republic (d) Euro area

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. No Consensus Forecast data available.

1Contact: Banque de France, 31 rue des Petits-Champs, 75001 Paris, France. Email:
christoph.grossesteffen(at)banque-france.fr, tel.: +33 (0)1 42 92 49 42.
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Figure A.1: Targets for monetary policy, AEs (2)

(e) Japan (f) South Korea

(g) New Zealand (h) Norway

(i) Sweden (j) Switzerland

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to
10 years. Yellow x=mean point forecast, h = 2 years.
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Figure A.1: Targets for monetary policy, AEs (3)

(k) United Kingdom (l) United States

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to
10 years. Yellow x=mean point forecast, h = 2 years.
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Figure A.2: Targets for monetary policy, EMEs (1)

(a) Albania (b) Armenia

(c) Chile (d) Colombia

(e) Guatemala (f) Hungary

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to
10 years. Yellow x=mean point forecast, h = 2 years.
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Figure A.2: Targets for monetary policy, IT countries (2)

(g) India (h) Israel

(i) Mexico (j) Peru

(k) Philippines (l) Poland

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to
10 years. Yellow x=mean point forecast, h = 2 years.
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Figure A.2: Targets for monetary policy, EMEs (3)

(m) Romania (n) Serbia

(o) South Africa (p) Thailand

(q) Turkey

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to
10 years. Yellow x=mean point forecast, h = 2 years.
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Table A.1: Target classification

(1) (2) (3) (4) (5) (6)
NoExplAn QuantDef RangeTar Range-Point Point-Tol PointTar IT introdate stable

Advanced Economies (AE)
Australia – – 1993m4 – – – 1993m4 1993m4
Canada – – – – 1991m3 - – 1991m3 1995m1
Czech Republic – – 1998m1-2005m12 – 2006m1- – 1998m1 2005m1
Euro area – 1999m1 - – – – – no IT 1999m1
Japan 1990m1-2006m2 2006m3-2012m1 – – – 2012m2 - 2012m2 1990m1
New Zealand – – 1990m1 - 2011m12 2012m1 - – – 1990m3 1993m1
Norway – – – – – 2001m3 - 2001m3 2001m3
South Korea – – 2004m1-2006m12;

2014m1-2015m12;
– 1998m4-2003m12;

2007m1-2013m12;
2016m1- 1998m3 2001m1

Sweden – – – – 1995m1-2009m12;
2017m10-

2010m1-2017m9 1993m1 1993m1

Switzerland – 1990m1-1999m11 1999m12 - – – – no IT 1990m1
United Kingdom 1990m1-1992m9 – 1992m10-1995m5 – 1995m6-2003m12 2004m1- 1992m10 1992m10
United States 1990m1-2012m2 – – – – 2012m3 - 2020m7 no IT 1990m1

Emerging Market Economies (EME)
Albania – – – – 2009m1- 2009m1 2009m1
Armenia – – – – 2006m1- – 2006m1 2011m1
Chile – – 1991m1-1994m12 – 2001m1- 1995m1-2000m12 1991m1 2001m1
Colombia – – 2003m1-2009m12 – 2010m1- 1999m9-2002m12 1999m9 2010m1
Guatemala – – – 2005m1- – 2005m1 2012m1
Hungary – – – – 2015m3- 2001m6-2015m2 2001m6 2007m1
India – – – 2016m8- – – 2016m8 2016m8
Israel – – 1992m1-1992m12;

1994m1-1998m12;
2000m1-

– – 1993m1-1993m12;
1999m1-1999m12

1997m6 2003m1

Mexico – – – – 2003m1- 1999m1-2002m12 1999m1 2003m1
Peru – – 1994m1-2001m12 – 2002m1- – 1994m1 2002m1
Poland – – 1999m1-2003m12 – 2004m1 – 1998m10 2004m1
Philippines – – – – 2002m1- – 2002m1 2015m1
Romania – – – – 2005m8 – 2005m8 2013m1
Serbia – – – – 2009m1- – 2009m1 2017m1
South Africa – – 2000m2- – – – 2000m2 2000m2
Thailand – – 2000m5-2014m12;

2020m1-
2015m1-2019m12 – – 2000m5 2000m5

Turkey – – – – 2006m1- 2003m12-2005m12 2006m1 2012m1

Notes: Targets for non-official inflation targeting (IT) countries are only considered for United States, United Kingdom, Euro area, Japan and Switzerland. Countries reporting
the the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER) to be an inflation targeter, but have changed the target between 2018 and 2020
are excluded from the analysis, as long-term expectations might still respond to changes in the target (Brazil, Costa Rica, Dominican Republic, Georgia, Indonesia, Kazakhstan,
Ukraine, Uruguay). Also, IT-countries with stable target values for which Consensus data is not available are excluded (Ghana, Iceland, Jamaica, Uganda). Source: Related
literature (Castelnuovo, Nicoletti-Altimari, and Rodriguez-Palenzuela, 2003; Mishkin and Schmidt-Hebbel, 2002; Roger, 2009; Hammond, 2012), , the IMF’s Annual Report on
Exchange Arrangements and Exchange Restrictions (AREAER) and central bank websites.
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B Goodness of fit with sample data

This section provides details on the first step of the derivation of the continuous density
functions proposed in the paper. This step provides us with two important results.
First, where are the observed highest and lowest observations across panelists located
in an estimated, parameterized distribution function? This information will inform the
location constraint in the simulated method of moments (SMM) estimation. Second,
which family of distribution functions fits the survey data best? For the ’goodness of
fit’ analysis, we fit two parametric models to sample data from consumer price inflation
point forecasts that are available at the shorter forecast horizons of ’current calendar
year’ and ’next calendar year’ forecasts. We use raw survey data on the ”next calendar
year’ projections.

B.1 Parametric analysis

For the ’goodness of fit’ analysis, we fit two parametric models to sample data from
point forecasts on consumer price inflation that are available from Consensus at the
shorter forecast horizons of ’current calendar year’ and ’next calendar year’ forecasts at
a monthly frequency. We use raw survey data on the ’next calendar year’ projections
and fit the generalized beta distribution and a skew extended t−distribution, labeled
here as skew t. Both distributions share a couple of similarities, namely to feature
skewness and being highly flexible to fit data. They differ mainly due to the bounded
support of the generalized beta, while the skew t is defined on the whole real line R.

B.1.1 The generalized beta distribution

Let the random variable x be distributed as a generalized beta distribution of param-
eters (a, b, l, r) if (x−l)/(r−l) is distributed as B(a, b). Let FB(x; a, b, l, r) denote the
CDF of the generalized beta for a random variable x ∈ [l, r], then we have

FB(x; a, b, l, r) =


0, if x ≤ l
Beta((x−l)/(r−l);a,b)

B(a,b)
, if l < x ≤ r

1, if x > r

where Beta(x; a, b) is the incomplete Beta function, given by

Beta(x; a, b) :=

Z x

0

ta−1(1−t)b−1dt.

The distribution’s PDF is given by

fB(x; a, b, l, r) :=
1

(r−l)B(a, b)

�
x−l

r−l

�a−1�
r−x

r−l

�b−1
I[l,r](x; a, b),

where I(x; ·, ·) denotes the incomplete beta function ratio.
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B.1.2 The skew extended t-distribution

For the definition of the skew t, we refer to the distribution proposed by Jones and
Faddy (2003) as in Ganics, Rossi, and Sekhposyan (2020). Let µ in R, σ, a, b > 0 be
parameters, then the distribution’s CDF is defined as

FJF (x;µ, σ, a, b) = I(z; a, b),

with z =
1

2

1 + �
x−µ
σ

�q
a+ b+

�
x−µ
σ

�2
 .

The distribution’s PDF is given by

fJF (x;µ, σ, a, b) =
1

σ
C−1a,b (1 + τ)

a+1/2(1−τ)b+1/2,

with Ca,b = 2
a+b−1B(a, b)(a+ b)

1
2 ,

and τ =
x−µ

σ

 
a+ b+

�
x−µ

σ

�2!−1
2

B.1.3 Maximum likelihood estimation

We are now ready to perform ML estimation using the next calendar year projections
xjit of panelist j = 1, ..., n for country i in period t as our observed sample data, and
maximizing

θ̂
(JF )
it = argmax

θ
(JF )
it ∈Θ(JF )

X
lnL̂n(θ

(JF )
it , xjit)

with L̂ = fJF (xjit; θ
(JF )
it )

where the parameter vector collects the four parameters θ
(JF )
it = (µit, σit, ait, bit). In

analogy, we perform ML estimation of the parameter vector of the generalized beta
distribution as

θ̂
(B)
it = argmax

θ
(B)
it ∈Θ(B)

X
lnL̂n(θ

(B)
it , xjit)

with L̂ = fB(xjit; θ
(B)
it )

where θ
(B)
it = (ait, bit, lit, rit).

B.2 Results

We estimate the vectors θ̂
(B)
it and θ̂

(JF )
it which we can then use for simulations in a

’goodness of fit’ analysis. Fig. B.3 compares the histogram of the survey data from 14
September 2009 for US consumer price inflation forecasts with the estimated distri-
bution functions. Both results look to be close approximations of the data. Fig. B.4
compares the empirical cdf, computed using the Kaplan-Meier nonparametric method,
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Figure B.3: Histograms of survey data and parametric models

(a) pdf, generalized Beta (b) pdf, skew t (JF)

Note: Results are shown for US consumer price inflation inflation forecasts for the next calendar year of a survey
published on 14 September 2009.

with the theoretical cdf of the estimated parametric density functions. Besides small
differences, both models seem to represent the data reasonably well.

In order to come to a robust conclusion about model fit, we perform a Kolmogorov-
Smirnoff test (KS-test) for the equality of the empirical cdf and the two candidate
parametric density functions. We do this for each estimated model, thus for every
period t and country i in the sample. The KS-test uses the null hypothesis that the
two underlying distribution functions are identical. Values of the KS-test above 0.05
indicate that the null cannot be rejected at the 5 percent confidence level.

Fig. B.5 shows the results of the KS-tests. Panel (a) presents test statistics across
all countries, while panel (b) shows the KS-test results over time. The KS-test of both
parametric models is highly statistical significant most of the time, implying the the
null of identity between the empirical cdf and the parameterized cdf cannot be rejected
at conventional levels of statistical significance. However, the skew t distribution has
on average higher p-values of the KS-test. Also, the minimum never falls below 0.1,
which is the case for some results of the generalized beta distribution. Based on these
results, we tentatively prefer the skew t over the generalized beta.

As a final step, we exploit the availability of micro data and compute various mea-
sures of skewness of the sample data. We then compare the skeweness ratio based on
the relative position of the mean with respect to lowest and highest panel responses

Sit =
(highit−µit)−(µit−lowit)

highit−lowit
.
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Figure B.4: Empirical cdf compared with parametric models

(a) cdf

Note: Results are shown for US consumer price inflation forecasts for the next calendar year of a survey published on
14 September 2009. The empirical cdf is computed using the Kaplan-Meier nonparametric method.

We further compute a percentile-based measure of skweness known as Kelly’s skewness

SKelly
0s

it =
(P (90)it−P (50)it)−(P (50)it−P (10)it)

P (90)it−P (10)it
,

and Pearson’s first and second skewness coefficient

SPearson1it =
µit−modeit

σit
,

SPearson2it =
3(µit−medianit)

σit
.

Tab. B.2 shows summary statistics of the measures of sample skewness, specifically
the minima and maxima of the skewness ratio and Kelly’s skewness. Tab. B.2 also
provides the corrleation of the skewness ratio based on mean, lowest and highest sample
observations with the alternative measures of skweness. We take this as encouraging
piece of evidence that the distribution functions estimated via a simulated method of
moments approach in step 2 can be well informed by the less conventional skewness
ratio.
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Figure B.5: Fit of the parametric models

(a) KS-test result (b) KS-test results over time

Note: The Figure shows the p-value of the Kolmogorov-Smirnoff test (KS-test) for a sample of US point forecast data
for inflation in the calendar year ahead, compared with the two parametric distributions estimated. The KS-test was
evaluated under the null hypothesis that the two compared distributions are identical. Values above 0.05 indicate that
the null cannot be rejected at the 5 percent confidence level. We do not report the KS-test statistic directly, since the
critical values vary for different sample sizes.

Table B.2: Skewness in panelists’ point forecasts

median [P(10)/P(90)] N

A. Levels, cross-country comparison
min(Sit) -0.460 [-0.603/-0.382] 25
max(Sit) 0.586 [0.483/0.681] 25

min(SKelly
0s

it ) -0.737 [-1.000/-0.599] 25

max(SKelly
0s

it ) 0.714 [0.620/1.000] 25

B. Correlations, cross-countries comparison
corr(Sit,S

unbiased
it ) 0.951 [0.936/0.963] 25

corr(Sit,S
Kelly0s
it ) 0.544 [0.362/0.749] 24

corr(Sit,S
Pearson2
it ) 0.545 [0.474/0.647] 25

corr(Sit,S
Pearson1
it ) 0.343 [0.183/0.436] 25

Note: Correlation coefficients computed from one-year ahead in-
flation point forecasts form Consensus. Median and percentiles
report the results across N countries. The main text provides a
description of the skewness measures.
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C Simulated method of moments

This section in the Appendix describes the simulated method of moments (SMM)
approach in more detail. In particular, it describes the data used for the location
constraint used in the SMM-estimator.

C.1 Location constraint

In order to inform the estimation procedure under SMM, we propose a location con-
straint. The location refers to the percentile of the respective lowest and highest
panel response in the estimated skew t distribution function. Equipped with the re-
sults of the ML-estimation in step 1 in the form of a sequence of parameter vectors
θ
(JF )
it = (µit, σit, ait, bit), we can compute the percentiles of the lowest and highest ob-
servation, which we denote by P lowi (F̂ ∗JF ) and P

high
i (F̂ ∗JF ). To gain clarity, an asterisc

denotes a distribution function estimated with the full cross-section as observations.

Figure C.6: Location of reported lowest/highest survey answer in estimated distribu-
tions

(a) Percentiles of lowi,t given F̂ (b) Percentiles of highi,t given F̂

Note: Distributions of percentiles computed from survey data for estimated density functions F̂B and F̂JF . Evaluated
are the lowest survey answers (lowi,t) and higherst survey answers, respectively, across all countries i and periods t.

Fig. C.6 panel (a) shows the histograms of percentiles P lowi (F̂ ∗JF ) and P
low
i (F̂ ∗B),

respectively. The mode of the distribution P lowi (F̂ ∗B) is almost at zero, a result from
the bounded support of the generalized beta distribution function. Thus, in many
cases the ML-estimation assigns a parameterization l = lowit. The result contrasts
a lot with the skew t distribution, defined on an unlimited support and exhibiting a
well-defined mode. Fig. C.6 panel (b) shows the histograms of percentiles P highi (F̂ ∗JF )
and P highi (F̂ ∗B). We make the same observation with respect to the location of the
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mode as for the location of the lowest sample responses in parametric distribution
functions F ∗B(·) and F ∗JF (·).

Table C.3: Summary statistics of survey data and inflation risk measures

data shape mean median mode sd [P(5)/P(95)] N

P lowi
F̂JF 4.22 3.20 2.26 4.487 [1.17/8.97] 6402

F̂B 4.34 3.21 0.21 4.074 [0.22/12.32] 6402

Phighi

F̂JF 95.91 96.95 97.76 5.171 [91.50/98.97] 6402

F̂B 96.29 97.38 99.99 3.665 [89.04/99.88] 6402

Note: Summary statistics P lowi and Phighi conditional on an estimated para-

metric distribution function F̂ ∗JF , F̂
∗
B . Data covering all countries i in the

sample and all available periods t for monthly next-year forecasts of CPI
inflation from Consensus.

Tab. C.3 shows summary statistics of the location parameters P lowi (F̂ ∗JF ), P
low
i (F̂ ∗B),

P highi (F̂ ∗JF ) and P
high
i (F̂ ∗B). We find that the mode of the distribution of percentiles in

case of the generalized beta is below the 5th percentile and above the 95th percentile.
In fact, this amounts to setting many times parameters that govern the support of the
generalized beta distribution equal to the respective lowest and highest observation
in the sample. This is not very desirable from the perspective that the sample data
is considered as a realization from a random draw under an unknown distribution,
since this gives zero probability mass to observations of inflation point forecasts below
lowit or above highit. We take this as a further argument to proceed with the skew t
distribution.

We estimate kernel density to the vector P lowi (F̂ ∗JF ),

f̂Plow(x) =
1

Nω

NX
i=1

K

�
x−xi
ω

�
,

where N is the number of observations, xi are the percentiles in the vector P
low
i (F̂ ∗JF ),

ω the bandwidth and K(·) is the kernel smoothing function, which we choose to be a
normal. Fig. C.6 plots the resulting kernel density function on top of the histogram.
This kernel density is used as location constraint in the SMM estimation as described
in the main text.
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